| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimfvre.p |
|
| 2 |
|
fnlimfvre.m |
|
| 3 |
|
fnlimfvre.n |
|
| 4 |
|
fnlimfvre.z |
|
| 5 |
|
fnlimfvre.f |
|
| 6 |
|
fnlimfvre.d |
|
| 7 |
|
fnlimfvre.x |
|
| 8 |
|
nfcv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfcv |
|
| 11 |
3 10
|
nffv |
|
| 12 |
11
|
nfdm |
|
| 13 |
9 12
|
nfiin |
|
| 14 |
8 13
|
nfiun |
|
| 15 |
14
|
ssrab2f |
|
| 16 |
6 15
|
eqsstri |
|
| 17 |
16
|
sseli |
|
| 18 |
|
eliun |
|
| 19 |
17 18
|
sylib |
|
| 20 |
7 19
|
syl |
|
| 21 |
|
nfv |
|
| 22 |
|
nfv |
|
| 23 |
|
nfv |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfii1 |
|
| 26 |
24 25
|
nfel |
|
| 27 |
1 23 26
|
nf3an |
|
| 28 |
|
uzssz |
|
| 29 |
4
|
eleq2i |
|
| 30 |
29
|
biimpi |
|
| 31 |
28 30
|
sselid |
|
| 32 |
31
|
3ad2ant2 |
|
| 33 |
|
eqid |
|
| 34 |
4
|
fvexi |
|
| 35 |
34
|
a1i |
|
| 36 |
4
|
uztrn2 |
|
| 37 |
36
|
ssd |
|
| 38 |
37
|
3ad2ant2 |
|
| 39 |
|
fvexd |
|
| 40 |
|
fvexd |
|
| 41 |
|
ssidd |
|
| 42 |
|
fvexd |
|
| 43 |
|
eqidd |
|
| 44 |
27 32 33 35 38 39 40 41 42 43
|
climfveqmpt |
|
| 45 |
6
|
eleq2i |
|
| 46 |
45
|
biimpi |
|
| 47 |
|
nfcv |
|
| 48 |
11 47
|
nffv |
|
| 49 |
8 48
|
nfmpt |
|
| 50 |
|
nfcv |
|
| 51 |
49 50
|
nfel |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
mpteq2dv |
|
| 54 |
53
|
eleq1d |
|
| 55 |
47 14 51 54
|
elrabf |
|
| 56 |
55
|
biimpi |
|
| 57 |
56
|
simprd |
|
| 58 |
46 57
|
syl |
|
| 59 |
58
|
adantr |
|
| 60 |
|
nfmpt1 |
|
| 61 |
|
nfcv |
|
| 62 |
60 61
|
nfel |
|
| 63 |
|
nfv |
|
| 64 |
63
|
nfci |
|
| 65 |
64 25
|
nfiun |
|
| 66 |
62 65
|
nfrabw |
|
| 67 |
6 66
|
nfcxfr |
|
| 68 |
24 67
|
nfel |
|
| 69 |
68 23
|
nfan |
|
| 70 |
31
|
adantl |
|
| 71 |
34
|
a1i |
|
| 72 |
37
|
adantl |
|
| 73 |
|
fvexd |
|
| 74 |
|
fvexd |
|
| 75 |
|
ssidd |
|
| 76 |
|
fvexd |
|
| 77 |
|
eqidd |
|
| 78 |
69 70 33 71 72 73 74 75 76 77
|
climeldmeqmpt |
|
| 79 |
59 78
|
mpbid |
|
| 80 |
|
climdm |
|
| 81 |
79 80
|
sylib |
|
| 82 |
7 81
|
sylan |
|
| 83 |
82
|
3adant3 |
|
| 84 |
|
simpl1 |
|
| 85 |
|
simpl2 |
|
| 86 |
|
nfcv |
|
| 87 |
|
nfcv |
|
| 88 |
2 87
|
nffv |
|
| 89 |
88
|
nfdm |
|
| 90 |
|
fveq2 |
|
| 91 |
90
|
dmeqd |
|
| 92 |
86 89 91
|
cbviin |
|
| 93 |
92
|
eleq2i |
|
| 94 |
93
|
biimpi |
|
| 95 |
94
|
adantr |
|
| 96 |
|
simpr |
|
| 97 |
|
eliinid |
|
| 98 |
95 96 97
|
syl2anc |
|
| 99 |
98
|
3ad2antl3 |
|
| 100 |
|
simpr |
|
| 101 |
|
id |
|
| 102 |
|
fvexd |
|
| 103 |
88 24
|
nffv |
|
| 104 |
90
|
fveq1d |
|
| 105 |
|
eqid |
|
| 106 |
87 103 104 105
|
fvmptf |
|
| 107 |
101 102 106
|
syl2anc |
|
| 108 |
107
|
adantl |
|
| 109 |
|
simpll |
|
| 110 |
36
|
adantll |
|
| 111 |
1 63
|
nfan |
|
| 112 |
|
nfcv |
|
| 113 |
88 89 112
|
nff |
|
| 114 |
111 113
|
nfim |
|
| 115 |
|
eleq1w |
|
| 116 |
115
|
anbi2d |
|
| 117 |
90 91
|
feq12d |
|
| 118 |
116 117
|
imbi12d |
|
| 119 |
114 118 5
|
chvarfv |
|
| 120 |
109 110 119
|
syl2anc |
|
| 121 |
120
|
3adantl3 |
|
| 122 |
|
simpl3 |
|
| 123 |
121 122
|
ffvelcdmd |
|
| 124 |
108 123
|
eqeltrd |
|
| 125 |
84 85 99 100 124
|
syl31anc |
|
| 126 |
33 32 83 125
|
climrecl |
|
| 127 |
44 126
|
eqeltrd |
|
| 128 |
127
|
3exp |
|
| 129 |
21 22 128
|
rexlimd |
|
| 130 |
20 129
|
mpd |
|