| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climfveqmpt.k |
|
| 2 |
|
climfveqmpt.m |
|
| 3 |
|
climfveqmpt.z |
|
| 4 |
|
climfveqmpt.A |
|
| 5 |
|
climfveqmpt.i |
|
| 6 |
|
climfveqmpt.b |
|
| 7 |
|
climfveqmpt.t |
|
| 8 |
|
climfveqmpt.l |
|
| 9 |
|
climfveqmpt.c |
|
| 10 |
|
climfveqmpt.e |
|
| 11 |
4
|
mptexd |
|
| 12 |
7
|
mptexd |
|
| 13 |
|
nfv |
|
| 14 |
1 13
|
nfan |
|
| 15 |
|
nfcv |
|
| 16 |
15
|
nfcsb1 |
|
| 17 |
15
|
nfcsb1 |
|
| 18 |
16 17
|
nfeq |
|
| 19 |
14 18
|
nfim |
|
| 20 |
|
eleq1w |
|
| 21 |
20
|
anbi2d |
|
| 22 |
|
csbeq1a |
|
| 23 |
|
csbeq1a |
|
| 24 |
22 23
|
eqeq12d |
|
| 25 |
21 24
|
imbi12d |
|
| 26 |
19 25 10
|
chvarfv |
|
| 27 |
5
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
|
simpr |
|
| 31 |
|
nfv |
|
| 32 |
1 31
|
nfan |
|
| 33 |
|
nfcv |
|
| 34 |
16 33
|
nfel |
|
| 35 |
32 34
|
nfim |
|
| 36 |
|
eleq1w |
|
| 37 |
36
|
anbi2d |
|
| 38 |
22
|
eleq1d |
|
| 39 |
37 38
|
imbi12d |
|
| 40 |
35 39 6
|
chvarfv |
|
| 41 |
|
eqid |
|
| 42 |
15 16 22 41
|
fvmptf |
|
| 43 |
30 40 42
|
syl2anc |
|
| 44 |
29 43
|
syldan |
|
| 45 |
8
|
adantr |
|
| 46 |
45 28
|
sseldd |
|
| 47 |
|
simpr |
|
| 48 |
|
nfv |
|
| 49 |
1 48
|
nfan |
|
| 50 |
|
nfcv |
|
| 51 |
17 50
|
nfel |
|
| 52 |
49 51
|
nfim |
|
| 53 |
|
eleq1w |
|
| 54 |
53
|
anbi2d |
|
| 55 |
23
|
eleq1d |
|
| 56 |
54 55
|
imbi12d |
|
| 57 |
52 56 9
|
chvarfv |
|
| 58 |
|
eqid |
|
| 59 |
15 17 23 58
|
fvmptf |
|
| 60 |
47 57 59
|
syl2anc |
|
| 61 |
46 60
|
syldan |
|
| 62 |
26 44 61
|
3eqtr4d |
|
| 63 |
3 11 12 2 62
|
climfveq |
|