Metamath Proof Explorer


Theorem climfveqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climfveqmpt.k 𝑘 𝜑
climfveqmpt.m ( 𝜑𝑀 ∈ ℤ )
climfveqmpt.z 𝑍 = ( ℤ𝑀 )
climfveqmpt.A ( 𝜑𝐴𝑅 )
climfveqmpt.i ( 𝜑𝑍𝐴 )
climfveqmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
climfveqmpt.t ( 𝜑𝐶𝑆 )
climfveqmpt.l ( 𝜑𝑍𝐶 )
climfveqmpt.c ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 )
climfveqmpt.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
Assertion climfveqmpt ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐵 ) ) = ( ⇝ ‘ ( 𝑘𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 climfveqmpt.k 𝑘 𝜑
2 climfveqmpt.m ( 𝜑𝑀 ∈ ℤ )
3 climfveqmpt.z 𝑍 = ( ℤ𝑀 )
4 climfveqmpt.A ( 𝜑𝐴𝑅 )
5 climfveqmpt.i ( 𝜑𝑍𝐴 )
6 climfveqmpt.b ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 )
7 climfveqmpt.t ( 𝜑𝐶𝑆 )
8 climfveqmpt.l ( 𝜑𝑍𝐶 )
9 climfveqmpt.c ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 )
10 climfveqmpt.e ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 )
11 4 mptexd ( 𝜑 → ( 𝑘𝐴𝐵 ) ∈ V )
12 7 mptexd ( 𝜑 → ( 𝑘𝐶𝐷 ) ∈ V )
13 nfv 𝑘 𝑗𝑍
14 1 13 nfan 𝑘 ( 𝜑𝑗𝑍 )
15 nfcv 𝑘 𝑗
16 15 nfcsb1 𝑘 𝑗 / 𝑘 𝐵
17 15 nfcsb1 𝑘 𝑗 / 𝑘 𝐷
18 16 17 nfeq 𝑘 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷
19 14 18 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
20 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
21 20 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
22 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
23 csbeq1a ( 𝑘 = 𝑗𝐷 = 𝑗 / 𝑘 𝐷 )
24 22 23 eqeq12d ( 𝑘 = 𝑗 → ( 𝐵 = 𝐷 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) )
25 21 24 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐵 = 𝐷 ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 ) ) )
26 19 25 10 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐵 = 𝑗 / 𝑘 𝐷 )
27 5 adantr ( ( 𝜑𝑗𝑍 ) → 𝑍𝐴 )
28 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
29 27 28 sseldd ( ( 𝜑𝑗𝑍 ) → 𝑗𝐴 )
30 simpr ( ( 𝜑𝑗𝐴 ) → 𝑗𝐴 )
31 nfv 𝑘 𝑗𝐴
32 1 31 nfan 𝑘 ( 𝜑𝑗𝐴 )
33 nfcv 𝑘 𝑉
34 16 33 nfel 𝑘 𝑗 / 𝑘 𝐵𝑉
35 32 34 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 )
36 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
37 36 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
38 22 eleq1d ( 𝑘 = 𝑗 → ( 𝐵𝑉 𝑗 / 𝑘 𝐵𝑉 ) )
39 37 38 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵𝑉 ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 ) ) )
40 35 39 6 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵𝑉 )
41 eqid ( 𝑘𝐴𝐵 ) = ( 𝑘𝐴𝐵 )
42 15 16 22 41 fvmptf ( ( 𝑗𝐴 𝑗 / 𝑘 𝐵𝑉 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
43 30 40 42 syl2anc ( ( 𝜑𝑗𝐴 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
44 29 43 syldan ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐵 )
45 8 adantr ( ( 𝜑𝑗𝑍 ) → 𝑍𝐶 )
46 45 28 sseldd ( ( 𝜑𝑗𝑍 ) → 𝑗𝐶 )
47 simpr ( ( 𝜑𝑗𝐶 ) → 𝑗𝐶 )
48 nfv 𝑘 𝑗𝐶
49 1 48 nfan 𝑘 ( 𝜑𝑗𝐶 )
50 nfcv 𝑘 𝑊
51 17 50 nfel 𝑘 𝑗 / 𝑘 𝐷𝑊
52 49 51 nfim 𝑘 ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 )
53 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐶𝑗𝐶 ) )
54 53 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐶 ) ↔ ( 𝜑𝑗𝐶 ) ) )
55 23 eleq1d ( 𝑘 = 𝑗 → ( 𝐷𝑊 𝑗 / 𝑘 𝐷𝑊 ) )
56 54 55 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐶 ) → 𝐷𝑊 ) ↔ ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 ) ) )
57 52 56 9 chvarfv ( ( 𝜑𝑗𝐶 ) → 𝑗 / 𝑘 𝐷𝑊 )
58 eqid ( 𝑘𝐶𝐷 ) = ( 𝑘𝐶𝐷 )
59 15 17 23 58 fvmptf ( ( 𝑗𝐶 𝑗 / 𝑘 𝐷𝑊 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
60 47 57 59 syl2anc ( ( 𝜑𝑗𝐶 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
61 46 60 syldan ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐷 )
62 26 44 61 3eqtr4d ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝐴𝐵 ) ‘ 𝑗 ) = ( ( 𝑘𝐶𝐷 ) ‘ 𝑗 ) )
63 3 11 12 2 62 climfveq ( 𝜑 → ( ⇝ ‘ ( 𝑘𝐴𝐵 ) ) = ( ⇝ ‘ ( 𝑘𝐶𝐷 ) ) )