Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climfveq.1 | |
|
climfveq.2 | |
||
climfveq.3 | |
||
climfveq.4 | |
||
climfveq.5 | |
||
Assertion | climfveq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfveq.1 | |
|
2 | climfveq.2 | |
|
3 | climfveq.3 | |
|
4 | climfveq.4 | |
|
5 | climfveq.5 | |
|
6 | climdm | |
|
7 | 6 | biimpi | |
8 | 7 | adantl | |
9 | 8 6 | sylibr | |
10 | 1 2 3 4 5 | climeldmeq | |
11 | 10 | adantr | |
12 | 9 11 | mpbid | |
13 | climdm | |
|
14 | 12 13 | sylib | |
15 | 3 | adantr | |
16 | 2 | adantr | |
17 | 4 | adantr | |
18 | 5 | eqcomd | |
19 | 18 | adantlr | |
20 | 1 15 16 17 19 | climeq | |
21 | 14 20 | mpbid | |
22 | climuni | |
|
23 | 8 21 22 | syl2anc | |
24 | ndmfv | |
|
25 | 24 | adantl | |
26 | simpr | |
|
27 | 10 | adantr | |
28 | 26 27 | mtbid | |
29 | ndmfv | |
|
30 | 28 29 | syl | |
31 | 25 30 | eqtr4d | |
32 | 23 31 | pm2.61dan | |