Metamath Proof Explorer


Theorem climfveq

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climfveq.1 Z=M
climfveq.2 φFV
climfveq.3 φGW
climfveq.4 φM
climfveq.5 φkZFk=Gk
Assertion climfveq φF=G

Proof

Step Hyp Ref Expression
1 climfveq.1 Z=M
2 climfveq.2 φFV
3 climfveq.3 φGW
4 climfveq.4 φM
5 climfveq.5 φkZFk=Gk
6 climdm FdomFF
7 6 biimpi FdomFF
8 7 adantl φFdomFF
9 8 6 sylibr φFdomFdom
10 1 2 3 4 5 climeldmeq φFdomGdom
11 10 adantr φFdomFdomGdom
12 9 11 mpbid φFdomGdom
13 climdm GdomGG
14 12 13 sylib φFdomGG
15 3 adantr φFdomGW
16 2 adantr φFdomFV
17 4 adantr φFdomM
18 5 eqcomd φkZGk=Fk
19 18 adantlr φFdomkZGk=Fk
20 1 15 16 17 19 climeq φFdomGGFG
21 14 20 mpbid φFdomFG
22 climuni FFFGF=G
23 8 21 22 syl2anc φFdomF=G
24 ndmfv ¬FdomF=
25 24 adantl φ¬FdomF=
26 simpr φ¬Fdom¬Fdom
27 10 adantr φ¬FdomFdomGdom
28 26 27 mtbid φ¬Fdom¬Gdom
29 ndmfv ¬GdomG=
30 28 29 syl φ¬FdomG=
31 25 30 eqtr4d φ¬FdomF=G
32 23 31 pm2.61dan φF=G