Metamath Proof Explorer


Theorem allbutfifvre

Description: Given a sequence of real-valued functions, and X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses allbutfifvre.1 mφ
allbutfifvre.2 Z=M
allbutfifvre.3 φmZFm:domFm
allbutfifvre.4 D=nZmndomFm
allbutfifvre.5 φXD
Assertion allbutfifvre φnZmnFmX

Proof

Step Hyp Ref Expression
1 allbutfifvre.1 mφ
2 allbutfifvre.2 Z=M
3 allbutfifvre.3 φmZFm:domFm
4 allbutfifvre.4 D=nZmndomFm
5 allbutfifvre.5 φXD
6 5 4 eleqtrdi φXnZmndomFm
7 eqid nZmndomFm=nZmndomFm
8 2 7 allbutfi XnZmndomFmnZmnXdomFm
9 6 8 sylib φnZmnXdomFm
10 nfv mnZ
11 1 10 nfan mφnZ
12 simpll φnZmnφ
13 2 uztrn2 nZjnjZ
14 13 ssd nZnZ
15 14 sselda nZmnmZ
16 15 adantll φnZmnmZ
17 3 ffvelcdmda φmZXdomFmFmX
18 17 ex φmZXdomFmFmX
19 12 16 18 syl2anc φnZmnXdomFmFmX
20 11 19 ralimdaa φnZmnXdomFmmnFmX
21 20 reximdva φnZmnXdomFmnZmnFmX
22 9 21 mpd φnZmnFmX