Description: The limit of complex number sequence F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climleltrp.k | |
|
climleltrp.f | |
||
climleltrp.z | |
||
climleltrp.n | |
||
climleltrp.r | |
||
climleltrp.a | |
||
climleltrp.c | |
||
climleltrp.l | |
||
climleltrp.x | |
||
Assertion | climleltrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climleltrp.k | |
|
2 | climleltrp.f | |
|
3 | climleltrp.z | |
|
4 | climleltrp.n | |
|
5 | climleltrp.r | |
|
6 | climleltrp.a | |
|
7 | climleltrp.c | |
|
8 | climleltrp.l | |
|
9 | climleltrp.x | |
|
10 | 4 3 | eleqtrdi | |
11 | uzss | |
|
12 | 10 11 | syl | |
13 | 12 3 | sseqtrrdi | |
14 | uzssz | |
|
15 | 14 10 | sselid | |
16 | eqid | |
|
17 | eqidd | |
|
18 | 1 2 15 16 6 17 9 | clim2d | |
19 | nfv | |
|
20 | 1 19 | nfan | |
21 | simplll | |
|
22 | uzss | |
|
23 | 22 | ad2antlr | |
24 | simpr | |
|
25 | 23 24 | sseldd | |
26 | 25 | adantr | |
27 | simpr | |
|
28 | 17 5 | eqeltrd | |
29 | 28 | adantr | |
30 | climcl | |
|
31 | 6 30 | syl | |
32 | 31 | adantr | |
33 | 28 | recnd | |
34 | 32 33 | pncan3d | |
35 | 34 | eqcomd | |
36 | 35 | adantr | |
37 | 36 29 | eqeltrrd | |
38 | 7 | ad2antrr | |
39 | 1 2 16 15 6 5 | climreclf | |
40 | 39 | ad2antrr | |
41 | 29 40 | resubcld | |
42 | 38 41 | readdcld | |
43 | 9 | rpred | |
44 | 43 | ad2antrr | |
45 | 38 44 | readdcld | |
46 | 8 | ad2antrr | |
47 | 40 38 41 46 | leadd1dd | |
48 | 33 | adantr | |
49 | 32 | adantr | |
50 | 48 49 | subcld | |
51 | 50 | abscld | |
52 | 41 | leabsd | |
53 | simpr | |
|
54 | 41 51 44 52 53 | lelttrd | |
55 | 41 44 38 54 | ltadd2dd | |
56 | 37 42 45 47 55 | lelttrd | |
57 | 36 56 | eqbrtrd | |
58 | 29 57 | jca | |
59 | 21 26 27 58 | syl21anc | |
60 | 59 | adantrl | |
61 | 60 | ex | |
62 | 20 61 | ralimdaa | |
63 | 62 | reximdva | |
64 | 18 63 | mpd | |
65 | ssrexv | |
|
66 | 13 64 65 | sylc | |