| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climleltrp.k |
|
| 2 |
|
climleltrp.f |
|
| 3 |
|
climleltrp.z |
|
| 4 |
|
climleltrp.n |
|
| 5 |
|
climleltrp.r |
|
| 6 |
|
climleltrp.a |
|
| 7 |
|
climleltrp.c |
|
| 8 |
|
climleltrp.l |
|
| 9 |
|
climleltrp.x |
|
| 10 |
4 3
|
eleqtrdi |
|
| 11 |
|
uzss |
|
| 12 |
10 11
|
syl |
|
| 13 |
12 3
|
sseqtrrdi |
|
| 14 |
|
uzssz |
|
| 15 |
14 10
|
sselid |
|
| 16 |
|
eqid |
|
| 17 |
|
eqidd |
|
| 18 |
1 2 15 16 6 17 9
|
clim2d |
|
| 19 |
|
nfv |
|
| 20 |
1 19
|
nfan |
|
| 21 |
|
simplll |
|
| 22 |
|
uzss |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
sseldd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
17 5
|
eqeltrd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
climcl |
|
| 31 |
6 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
28
|
recnd |
|
| 34 |
32 33
|
pncan3d |
|
| 35 |
34
|
eqcomd |
|
| 36 |
35
|
adantr |
|
| 37 |
36 29
|
eqeltrrd |
|
| 38 |
7
|
ad2antrr |
|
| 39 |
1 2 16 15 6 5
|
climreclf |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
29 40
|
resubcld |
|
| 42 |
38 41
|
readdcld |
|
| 43 |
9
|
rpred |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
38 44
|
readdcld |
|
| 46 |
8
|
ad2antrr |
|
| 47 |
40 38 41 46
|
leadd1dd |
|
| 48 |
33
|
adantr |
|
| 49 |
32
|
adantr |
|
| 50 |
48 49
|
subcld |
|
| 51 |
50
|
abscld |
|
| 52 |
41
|
leabsd |
|
| 53 |
|
simpr |
|
| 54 |
41 51 44 52 53
|
lelttrd |
|
| 55 |
41 44 38 54
|
ltadd2dd |
|
| 56 |
37 42 45 47 55
|
lelttrd |
|
| 57 |
36 56
|
eqbrtrd |
|
| 58 |
29 57
|
jca |
|
| 59 |
21 26 27 58
|
syl21anc |
|
| 60 |
59
|
adantrl |
|
| 61 |
60
|
ex |
|
| 62 |
20 61
|
ralimdaa |
|
| 63 |
62
|
reximdva |
|
| 64 |
18 63
|
mpd |
|
| 65 |
|
ssrexv |
|
| 66 |
13 64 65
|
sylc |
|