Metamath Proof Explorer


Theorem climleltrp

Description: The limit of complex number sequence F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climleltrp.k kφ
climleltrp.f _kF
climleltrp.z Z=M
climleltrp.n φNZ
climleltrp.r φkNFk
climleltrp.a φFA
climleltrp.c φC
climleltrp.l φAC
climleltrp.x φX+
Assertion climleltrp φjZkjFkFk<C+X

Proof

Step Hyp Ref Expression
1 climleltrp.k kφ
2 climleltrp.f _kF
3 climleltrp.z Z=M
4 climleltrp.n φNZ
5 climleltrp.r φkNFk
6 climleltrp.a φFA
7 climleltrp.c φC
8 climleltrp.l φAC
9 climleltrp.x φX+
10 4 3 eleqtrdi φNM
11 uzss NMNM
12 10 11 syl φNM
13 12 3 sseqtrrdi φNZ
14 uzssz M
15 14 10 sselid φN
16 eqid N=N
17 eqidd φkNFk=Fk
18 1 2 15 16 6 17 9 clim2d φjNkjFkFkA<X
19 nfv kjN
20 1 19 nfan kφjN
21 simplll φjNkjFkA<Xφ
22 uzss jNjN
23 22 ad2antlr φjNkjjN
24 simpr φjNkjkj
25 23 24 sseldd φjNkjkN
26 25 adantr φjNkjFkA<XkN
27 simpr φjNkjFkA<XFkA<X
28 17 5 eqeltrd φkNFk
29 28 adantr φkNFkA<XFk
30 climcl FAA
31 6 30 syl φA
32 31 adantr φkNA
33 28 recnd φkNFk
34 32 33 pncan3d φkNA+Fk-A=Fk
35 34 eqcomd φkNFk=A+Fk-A
36 35 adantr φkNFkA<XFk=A+Fk-A
37 36 29 eqeltrrd φkNFkA<XA+Fk-A
38 7 ad2antrr φkNFkA<XC
39 1 2 16 15 6 5 climreclf φA
40 39 ad2antrr φkNFkA<XA
41 29 40 resubcld φkNFkA<XFkA
42 38 41 readdcld φkNFkA<XC+Fk-A
43 9 rpred φX
44 43 ad2antrr φkNFkA<XX
45 38 44 readdcld φkNFkA<XC+X
46 8 ad2antrr φkNFkA<XAC
47 40 38 41 46 leadd1dd φkNFkA<XA+Fk-AC+Fk-A
48 33 adantr φkNFkA<XFk
49 32 adantr φkNFkA<XA
50 48 49 subcld φkNFkA<XFkA
51 50 abscld φkNFkA<XFkA
52 41 leabsd φkNFkA<XFkAFkA
53 simpr φkNFkA<XFkA<X
54 41 51 44 52 53 lelttrd φkNFkA<XFkA<X
55 41 44 38 54 ltadd2dd φkNFkA<XC+Fk-A<C+X
56 37 42 45 47 55 lelttrd φkNFkA<XA+Fk-A<C+X
57 36 56 eqbrtrd φkNFkA<XFk<C+X
58 29 57 jca φkNFkA<XFkFk<C+X
59 21 26 27 58 syl21anc φjNkjFkA<XFkFk<C+X
60 59 adantrl φjNkjFkFkA<XFkFk<C+X
61 60 ex φjNkjFkFkA<XFkFk<C+X
62 20 61 ralimdaa φjNkjFkFkA<XkjFkFk<C+X
63 62 reximdva φjNkjFkFkA<XjNkjFkFk<C+X
64 18 63 mpd φjNkjFkFk<C+X
65 ssrexv NZjNkjFkFk<C+XjZkjFkFk<C+X
66 13 64 65 sylc φjZkjFkFk<C+X