Metamath Proof Explorer


Theorem fnlimfvre2

Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimfvre2.p mφ
fnlimfvre2.m _mF
fnlimfvre2.n _xF
fnlimfvre2.z Z=M
fnlimfvre2.f φmZFm:domFm
fnlimfvre2.d D=xnZmndomFm|mZFmxdom
fnlimfvre2.g G=xDmZFmx
fnlimfvre2.x φXD
Assertion fnlimfvre2 φGX

Proof

Step Hyp Ref Expression
1 fnlimfvre2.p mφ
2 fnlimfvre2.m _mF
3 fnlimfvre2.n _xF
4 fnlimfvre2.z Z=M
5 fnlimfvre2.f φmZFm:domFm
6 fnlimfvre2.d D=xnZmndomFm|mZFmxdom
7 fnlimfvre2.g G=xDmZFmx
8 fnlimfvre2.x φXD
9 nfrab1 _xxnZmndomFm|mZFmxdom
10 6 9 nfcxfr _xD
11 nfcv _zD
12 nfcv _zmZFmx
13 nfcv _x
14 nfcv _xZ
15 nfcv _xm
16 3 15 nffv _xFm
17 nfcv _xz
18 16 17 nffv _xFmz
19 14 18 nfmpt _xmZFmz
20 13 19 nffv _xmZFmz
21 fveq2 x=zFmx=Fmz
22 21 mpteq2dv x=zmZFmx=mZFmz
23 22 fveq2d x=zmZFmx=mZFmz
24 10 11 12 20 23 cbvmptf xDmZFmx=zDmZFmz
25 7 24 eqtri G=zDmZFmz
26 fveq2 X=zFmX=Fmz
27 26 mpteq2dv X=zmZFmX=mZFmz
28 eqcom X=zz=X
29 28 imbi1i X=zmZFmX=mZFmzz=XmZFmX=mZFmz
30 eqcom mZFmX=mZFmzmZFmz=mZFmX
31 30 imbi2i z=XmZFmX=mZFmzz=XmZFmz=mZFmX
32 29 31 bitri X=zmZFmX=mZFmzz=XmZFmz=mZFmX
33 27 32 mpbi z=XmZFmz=mZFmX
34 33 fveq2d z=XmZFmz=mZFmX
35 fvexd φmZFmXV
36 25 34 8 35 fvmptd3 φGX=mZFmX
37 1 2 3 4 5 6 8 fnlimfvre φmZFmX
38 36 37 eqeltrd φGX