| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimfvre2.p |
⊢ Ⅎ 𝑚 𝜑 |
| 2 |
|
fnlimfvre2.m |
⊢ Ⅎ 𝑚 𝐹 |
| 3 |
|
fnlimfvre2.n |
⊢ Ⅎ 𝑥 𝐹 |
| 4 |
|
fnlimfvre2.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
fnlimfvre2.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 6 |
|
fnlimfvre2.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 7 |
|
fnlimfvre2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 8 |
|
fnlimfvre2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 9 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 10 |
6 9
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐷 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 16 |
3 15
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 18 |
16 17
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) |
| 19 |
14 18
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 20 |
13 19
|
nffv |
⊢ Ⅎ 𝑥 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 22 |
21
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 24 |
10 11 12 20 23
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 25 |
7 24
|
eqtri |
⊢ 𝐺 = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑋 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 27 |
26
|
mpteq2dv |
⊢ ( 𝑋 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 28 |
|
eqcom |
⊢ ( 𝑋 = 𝑧 ↔ 𝑧 = 𝑋 ) |
| 29 |
28
|
imbi1i |
⊢ ( ( 𝑋 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ↔ ( 𝑧 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 30 |
|
eqcom |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 31 |
30
|
imbi2i |
⊢ ( ( 𝑧 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ↔ ( 𝑧 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 32 |
29 31
|
bitri |
⊢ ( ( 𝑋 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ↔ ( 𝑧 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 33 |
27 32
|
mpbi |
⊢ ( 𝑧 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑧 = 𝑋 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 35 |
|
fvexd |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ V ) |
| 36 |
25 34 8 35
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 37 |
1 2 3 4 5 6 8
|
fnlimfvre |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 38 |
36 37
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ ℝ ) |