| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimf.p |
⊢ Ⅎ 𝑚 𝜑 |
| 2 |
|
fnlimf.m |
⊢ Ⅎ 𝑚 𝐹 |
| 3 |
|
fnlimf.n |
⊢ Ⅎ 𝑥 𝐹 |
| 4 |
|
fnlimf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
fnlimf.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 6 |
|
fnlimf.d |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 7 |
|
fnlimf.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑚 𝑧 ∈ 𝐷 |
| 9 |
1 8
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) |
| 10 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → 𝑧 ∈ 𝐷 ) |
| 12 |
9 2 3 4 10 6 11
|
fnlimfvre |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 13 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 14 |
6 13
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐷 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 20 |
3 19
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 22 |
20 21
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) |
| 23 |
18 22
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 24 |
17 23
|
nffv |
⊢ Ⅎ 𝑥 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 28 |
14 15 16 24 27
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 29 |
7 28
|
eqtri |
⊢ 𝐺 = ( 𝑧 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 30 |
12 29
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐷 ⟶ ℝ ) |