| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimfvre2.p |
|- F/ m ph |
| 2 |
|
fnlimfvre2.m |
|- F/_ m F |
| 3 |
|
fnlimfvre2.n |
|- F/_ x F |
| 4 |
|
fnlimfvre2.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
fnlimfvre2.f |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
| 6 |
|
fnlimfvre2.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 7 |
|
fnlimfvre2.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
| 8 |
|
fnlimfvre2.x |
|- ( ph -> X e. D ) |
| 9 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
| 10 |
6 9
|
nfcxfr |
|- F/_ x D |
| 11 |
|
nfcv |
|- F/_ z D |
| 12 |
|
nfcv |
|- F/_ z ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
| 13 |
|
nfcv |
|- F/_ x ~~> |
| 14 |
|
nfcv |
|- F/_ x Z |
| 15 |
|
nfcv |
|- F/_ x m |
| 16 |
3 15
|
nffv |
|- F/_ x ( F ` m ) |
| 17 |
|
nfcv |
|- F/_ x z |
| 18 |
16 17
|
nffv |
|- F/_ x ( ( F ` m ) ` z ) |
| 19 |
14 18
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` z ) ) |
| 20 |
13 19
|
nffv |
|- F/_ x ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
| 21 |
|
fveq2 |
|- ( x = z -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` z ) ) |
| 22 |
21
|
mpteq2dv |
|- ( x = z -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
| 23 |
22
|
fveq2d |
|- ( x = z -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
| 24 |
10 11 12 20 23
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( z e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
| 25 |
7 24
|
eqtri |
|- G = ( z e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
| 26 |
|
fveq2 |
|- ( X = z -> ( ( F ` m ) ` X ) = ( ( F ` m ) ` z ) ) |
| 27 |
26
|
mpteq2dv |
|- ( X = z -> ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
| 28 |
|
eqcom |
|- ( X = z <-> z = X ) |
| 29 |
28
|
imbi1i |
|- ( ( X = z -> ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) <-> ( z = X -> ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
| 30 |
|
eqcom |
|- ( ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) <-> ( m e. Z |-> ( ( F ` m ) ` z ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
| 31 |
30
|
imbi2i |
|- ( ( z = X -> ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) <-> ( z = X -> ( m e. Z |-> ( ( F ` m ) ` z ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 32 |
29 31
|
bitri |
|- ( ( X = z -> ( m e. Z |-> ( ( F ` m ) ` X ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) <-> ( z = X -> ( m e. Z |-> ( ( F ` m ) ` z ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 33 |
27 32
|
mpbi |
|- ( z = X -> ( m e. Z |-> ( ( F ` m ) ` z ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
| 34 |
33
|
fveq2d |
|- ( z = X -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 35 |
|
fvexd |
|- ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. _V ) |
| 36 |
25 34 8 35
|
fvmptd3 |
|- ( ph -> ( G ` X ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
| 37 |
1 2 3 4 5 6 8
|
fnlimfvre |
|- ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) |
| 38 |
36 37
|
eqeltrd |
|- ( ph -> ( G ` X ) e. RR ) |