| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climleltrp.k |
|- F/ k ph |
| 2 |
|
climleltrp.f |
|- F/_ k F |
| 3 |
|
climleltrp.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
climleltrp.n |
|- ( ph -> N e. Z ) |
| 5 |
|
climleltrp.r |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
| 6 |
|
climleltrp.a |
|- ( ph -> F ~~> A ) |
| 7 |
|
climleltrp.c |
|- ( ph -> C e. RR ) |
| 8 |
|
climleltrp.l |
|- ( ph -> A <_ C ) |
| 9 |
|
climleltrp.x |
|- ( ph -> X e. RR+ ) |
| 10 |
4 3
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 11 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 13 |
12 3
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` N ) C_ Z ) |
| 14 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 15 |
14 10
|
sselid |
|- ( ph -> N e. ZZ ) |
| 16 |
|
eqid |
|- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
| 17 |
|
eqidd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = ( F ` k ) ) |
| 18 |
1 2 15 16 6 17 9
|
clim2d |
|- ( ph -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) |
| 19 |
|
nfv |
|- F/ k j e. ( ZZ>= ` N ) |
| 20 |
1 19
|
nfan |
|- F/ k ( ph /\ j e. ( ZZ>= ` N ) ) |
| 21 |
|
simplll |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ph ) |
| 22 |
|
uzss |
|- ( j e. ( ZZ>= ` N ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` N ) ) |
| 23 |
22
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ZZ>= ` j ) C_ ( ZZ>= ` N ) ) |
| 24 |
|
simpr |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` j ) ) |
| 25 |
23 24
|
sseldd |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` N ) ) |
| 26 |
25
|
adantr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> k e. ( ZZ>= ` N ) ) |
| 27 |
|
simpr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
| 28 |
17 5
|
eqeltrd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. RR ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) e. RR ) |
| 30 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
| 31 |
6 30
|
syl |
|- ( ph -> A e. CC ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A e. CC ) |
| 33 |
28
|
recnd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. CC ) |
| 34 |
32 33
|
pncan3d |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( A + ( ( F ` k ) - A ) ) = ( F ` k ) ) |
| 35 |
34
|
eqcomd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) = ( A + ( ( F ` k ) - A ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) = ( A + ( ( F ` k ) - A ) ) ) |
| 37 |
36 29
|
eqeltrrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) e. RR ) |
| 38 |
7
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> C e. RR ) |
| 39 |
1 2 16 15 6 5
|
climreclf |
|- ( ph -> A e. RR ) |
| 40 |
39
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A e. RR ) |
| 41 |
29 40
|
resubcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) e. RR ) |
| 42 |
38 41
|
readdcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + ( ( F ` k ) - A ) ) e. RR ) |
| 43 |
9
|
rpred |
|- ( ph -> X e. RR ) |
| 44 |
43
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> X e. RR ) |
| 45 |
38 44
|
readdcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + X ) e. RR ) |
| 46 |
8
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A <_ C ) |
| 47 |
40 38 41 46
|
leadd1dd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) <_ ( C + ( ( F ` k ) - A ) ) ) |
| 48 |
33
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) e. CC ) |
| 49 |
32
|
adantr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A e. CC ) |
| 50 |
48 49
|
subcld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) e. CC ) |
| 51 |
50
|
abscld |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) e. RR ) |
| 52 |
41
|
leabsd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) <_ ( abs ` ( ( F ` k ) - A ) ) ) |
| 53 |
|
simpr |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( abs ` ( ( F ` k ) - A ) ) < X ) |
| 54 |
41 51 44 52 53
|
lelttrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) - A ) < X ) |
| 55 |
41 44 38 54
|
ltadd2dd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( C + ( ( F ` k ) - A ) ) < ( C + X ) ) |
| 56 |
37 42 45 47 55
|
lelttrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( A + ( ( F ` k ) - A ) ) < ( C + X ) ) |
| 57 |
36 56
|
eqbrtrd |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( F ` k ) < ( C + X ) ) |
| 58 |
29 57
|
jca |
|- ( ( ( ph /\ k e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
| 59 |
21 26 27 58
|
syl21anc |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
| 60 |
59
|
adantrl |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) /\ ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
| 61 |
60
|
ex |
|- ( ( ( ph /\ j e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
| 62 |
20 61
|
ralimdaa |
|- ( ( ph /\ j e. ( ZZ>= ` N ) ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
| 63 |
62
|
reximdva |
|- ( ph -> ( E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < X ) -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
| 64 |
18 63
|
mpd |
|- ( ph -> E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |
| 65 |
|
ssrexv |
|- ( ( ZZ>= ` N ) C_ Z -> ( E. j e. ( ZZ>= ` N ) A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) ) |
| 66 |
13 64 65
|
sylc |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. RR /\ ( F ` k ) < ( C + X ) ) ) |