Metamath Proof Explorer


Theorem eliinid

Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion eliinid AxBCxBAC

Proof

Step Hyp Ref Expression
1 simpl AxBCxBAxBC
2 eliin AxBCAxBCxBAC
3 2 adantr AxBCxBAxBCxBAC
4 1 3 mpbid AxBCxBxBAC
5 rspa xBACxBAC
6 4 5 sylancom AxBCxBAC