Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliinid | ⊢ ( ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ) | |
| 2 | eliin | ⊢ ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
| 4 | 1 3 | mpbid | ⊢ ( ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |
| 5 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐶 ) | |
| 6 | 4 5 | sylancom | ⊢ ( ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐶 ) |