Metamath Proof Explorer


Theorem abssf

Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis abssf.1 _xA
Assertion abssf x|φAxφxA

Proof

Step Hyp Ref Expression
1 abssf.1 _xA
2 1 abid2f x|xA=A
3 2 sseq2i x|φx|xAx|φA
4 ss2ab x|φx|xAxφxA
5 3 4 bitr3i x|φAxφxA