| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smflimlem2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
smflimlem2.2 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smflimlem2.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 4 |
|
smflimlem2.4 |
⊢ 𝐷 = { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 5 |
|
smflimlem2.5 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 6 |
|
smflimlem2.6 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 7 |
|
smflimlem2.7 |
⊢ 𝑃 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 8 |
|
smflimlem2.8 |
⊢ 𝐻 = ( 𝑚 ∈ 𝑍 , 𝑘 ∈ ℕ ↦ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
| 9 |
|
smflimlem2.9 |
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) |
| 10 |
|
smflimlem2.10 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ) |
| 11 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } |
| 12 |
4 11
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
| 13 |
12
|
ssrab2f |
⊢ { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ⊆ 𝐷 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ⊆ 𝐷 ) |
| 15 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ 𝐷 ) |
| 16 |
|
ssrab2 |
⊢ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 17 |
4 16
|
eqsstri |
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) |
| 18 |
17
|
sseli |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ 𝑖 ) ) |
| 20 |
19
|
iineq1d |
⊢ ( 𝑛 = 𝑖 → ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 21 |
20
|
cbviunv |
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) = ∪ 𝑖 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) |
| 22 |
21
|
eleq2i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ 𝑥 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 23 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑖 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑖 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 24 |
22 23
|
bitri |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ↔ ∃ 𝑖 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 25 |
18 24
|
sylib |
⊢ ( 𝑥 ∈ 𝐷 → ∃ 𝑖 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 26 |
15 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∃ 𝑖 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 28 |
|
nfv |
⊢ Ⅎ 𝑚 𝑘 ∈ ℕ |
| 29 |
27 28
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) |
| 30 |
|
nfv |
⊢ Ⅎ 𝑚 𝑖 ∈ 𝑍 |
| 31 |
29 30
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑥 |
| 33 |
|
nfii1 |
⊢ Ⅎ 𝑚 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) |
| 34 |
32 33
|
nfel |
⊢ Ⅎ 𝑚 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) |
| 35 |
31 34
|
nfan |
⊢ Ⅎ 𝑚 ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 36 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 37 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑖 ) |
| 38 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 39 |
1
|
eleq2i |
⊢ ( 𝑖 ∈ 𝑍 ↔ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 40 |
39
|
biimpi |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 41 |
38 40
|
sselid |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ℤ ) |
| 42 |
|
uzid |
⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 44 |
43
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 45 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ) |
| 46 |
45
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
| 47 |
|
uzss |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 48 |
40 47
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 |
48 1
|
sseqtrrdi |
⊢ ( 𝑖 ∈ 𝑍 → ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 ) |
| 50 |
49
|
sselda |
⊢ ( ( 𝑖 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑚 ∈ 𝑍 ) |
| 51 |
50
|
ad4ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑚 ∈ 𝑍 ) |
| 52 |
|
eliinid |
⊢ ( ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 53 |
52
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 54 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 55 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 56 |
54 55
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 57 |
56
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 58 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 59 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 60 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 61 |
58 59 60
|
smff |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 62 |
61
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) : dom ( 𝐹 ‘ 𝑚 ) ⟶ ℝ ) |
| 63 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 64 |
62 63
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ ℝ ) |
| 65 |
57 64
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 66 |
46 51 53 65
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 67 |
66
|
adantl3r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 68 |
67
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 69 |
4
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 70 |
69
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } ) |
| 71 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) dom ( 𝐹 ‘ 𝑚 ) ∣ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ } → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 72 |
70 71
|
syl |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 73 |
|
climdm |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ↔ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 74 |
72 73
|
sylib |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 76 |
75 73
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ∈ dom ⇝ ) |
| 77 |
76 73
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 78 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 79 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐷 ) |
| 80 |
12 78 5 79
|
fnlimfv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐺 ‘ 𝑥 ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 81 |
80
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 82 |
77 81
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 83 |
82
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) |
| 84 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝐴 ∈ ℝ ) |
| 85 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) |
| 86 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
| 87 |
|
nnrecrp |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 88 |
86 87
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 89 |
35 36 37 44 68 83 84 85 88
|
climleltrp |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) ) |
| 90 |
|
simp-6l |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝜑 ) |
| 91 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → 𝑖 ∈ 𝑍 ) |
| 92 |
91
|
adantr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑖 ∈ 𝑍 ) |
| 93 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 94 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 95 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
| 96 |
95 30 34
|
nf3an |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) |
| 97 |
|
nfv |
⊢ Ⅎ 𝑚 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) |
| 98 |
96 97
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 99 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 100 |
37
|
uztrn2 |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 101 |
100
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 102 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 103 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 104 |
102 103 50
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑚 ∈ 𝑍 ) |
| 105 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) |
| 106 |
|
id |
⊢ ( 𝑚 ∈ 𝑍 → 𝑚 ∈ 𝑍 ) |
| 107 |
|
fvexd |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) |
| 108 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 109 |
108
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ∈ V ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 110 |
106 107 109
|
syl2anc |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) |
| 111 |
110
|
eqcomd |
⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ) |
| 113 |
|
simpr |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) |
| 114 |
112 113
|
eqbrtrd |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) |
| 115 |
104 105 114
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) |
| 116 |
52
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ) |
| 118 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) |
| 119 |
117 118
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) ) |
| 120 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ↔ ( 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) ) |
| 121 |
119 120
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 122 |
115 121
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 123 |
122
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 124 |
123
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 125 |
99 101 124
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 126 |
98 125
|
ralimdaa |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 127 |
90 92 93 94 126
|
syl31anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 128 |
127
|
reximdva |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) ∈ ℝ ∧ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ‘ 𝑚 ) < ( 𝐴 + ( 1 / 𝑘 ) ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 129 |
89 128
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 130 |
|
ssrexv |
⊢ ( ( ℤ≥ ‘ 𝑖 ) ⊆ 𝑍 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 131 |
49 130
|
syl |
⊢ ( 𝑖 ∈ 𝑍 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 132 |
131
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑖 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 133 |
129 132
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 134 |
133
|
rexlimdva2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑖 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑖 ) dom ( 𝐹 ‘ 𝑚 ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ) |
| 135 |
26 134
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 136 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) |
| 137 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } |
| 138 |
136 137
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 139 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝜑 ) |
| 140 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 141 |
1
|
uztrn2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑗 ∈ 𝑍 ) |
| 142 |
141
|
ssd |
⊢ ( 𝑛 ∈ 𝑍 → ( ℤ≥ ‘ 𝑛 ) ⊆ 𝑍 ) |
| 143 |
142
|
sselda |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 144 |
143
|
adantll |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 145 |
144
|
3adantl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 146 |
145
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 147 |
|
rspa |
⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 148 |
147
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 149 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → 𝜑 ) |
| 150 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
| 151 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → 𝑘 ∈ ℕ ) |
| 152 |
|
eqid |
⊢ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } |
| 153 |
152 2
|
rabexd |
⊢ ( 𝜑 → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
| 154 |
153
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
| 155 |
154
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
| 156 |
155
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
| 157 |
7
|
elrnmpoid |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑘 ∈ ℕ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) → ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) |
| 158 |
150 151 156 157
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) |
| 159 |
|
ovex |
⊢ ( 𝑚 𝑃 𝑘 ) ∈ V |
| 160 |
|
eleq1 |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → ( 𝑟 ∈ ran 𝑃 ↔ ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) ) |
| 161 |
160
|
anbi2d |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → ( ( 𝜑 ∧ 𝑟 ∈ ran 𝑃 ) ↔ ( 𝜑 ∧ ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) ) ) |
| 162 |
|
fveq2 |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → ( 𝐶 ‘ 𝑟 ) = ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
| 163 |
|
id |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → 𝑟 = ( 𝑚 𝑃 𝑘 ) ) |
| 164 |
162 163
|
eleq12d |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → ( ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ↔ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ ( 𝑚 𝑃 𝑘 ) ) ) |
| 165 |
161 164
|
imbi12d |
⊢ ( 𝑟 = ( 𝑚 𝑃 𝑘 ) → ( ( ( 𝜑 ∧ 𝑟 ∈ ran 𝑃 ) → ( 𝐶 ‘ 𝑟 ) ∈ 𝑟 ) ↔ ( ( 𝜑 ∧ ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ ( 𝑚 𝑃 𝑘 ) ) ) ) |
| 166 |
159 165 10
|
vtocl |
⊢ ( ( 𝜑 ∧ ( 𝑚 𝑃 𝑘 ) ∈ ran 𝑃 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ ( 𝑚 𝑃 𝑘 ) ) |
| 167 |
149 158 166
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ ( 𝑚 𝑃 𝑘 ) ) |
| 168 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ V ) |
| 169 |
8
|
ovmpt4g |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ V ) → ( 𝑚 𝐻 𝑘 ) = ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
| 170 |
150 151 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 𝐻 𝑘 ) = ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ) |
| 171 |
170
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) = ( 𝑚 𝐻 𝑘 ) ) |
| 172 |
149 153
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) |
| 173 |
7
|
ovmpt4g |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ ∧ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ∈ V ) → ( 𝑚 𝑃 𝑘 ) = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 174 |
150 151 172 173
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 𝑃 𝑘 ) = { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 175 |
171 174
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝐶 ‘ ( 𝑚 𝑃 𝑘 ) ) ∈ ( 𝑚 𝑃 𝑘 ) ↔ ( 𝑚 𝐻 𝑘 ) ∈ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
| 176 |
167 175
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( 𝑚 𝐻 𝑘 ) ∈ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 177 |
|
ineq1 |
⊢ ( 𝑠 = ( 𝑚 𝐻 𝑘 ) → ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) = ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 178 |
177
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑚 𝐻 𝑘 ) → ( { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 179 |
178
|
elrab |
⊢ ( ( 𝑚 𝐻 𝑘 ) ∈ { 𝑠 ∈ 𝑆 ∣ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ↔ ( ( 𝑚 𝐻 𝑘 ) ∈ 𝑆 ∧ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 180 |
176 179
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑚 𝐻 𝑘 ) ∈ 𝑆 ∧ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 181 |
180
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } = ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 182 |
|
inss1 |
⊢ ( ( 𝑚 𝐻 𝑘 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ⊆ ( 𝑚 𝐻 𝑘 ) |
| 183 |
181 182
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ⊆ ( 𝑚 𝐻 𝑘 ) ) |
| 184 |
183
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ⊆ ( 𝑚 𝐻 𝑘 ) ) |
| 185 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) |
| 186 |
184 185
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) |
| 187 |
139 140 146 148 186
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) |
| 188 |
187
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) → 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) ) |
| 189 |
138 188
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) |
| 190 |
|
vex |
⊢ 𝑥 ∈ V |
| 191 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) ) |
| 192 |
190 191
|
ax-mp |
⊢ ( 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ ( 𝑚 𝐻 𝑘 ) ) |
| 193 |
189 192
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } ) → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 194 |
193
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) ) |
| 195 |
194
|
ad5ant145 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) ) |
| 196 |
195
|
reximdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ∃ 𝑛 ∈ 𝑍 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) 𝑥 ∈ { 𝑥 ∈ dom ( 𝐹 ‘ 𝑚 ) ∣ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) < ( 𝐴 + ( 1 / 𝑘 ) ) } → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) ) |
| 197 |
135 196
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 198 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 199 |
197 198
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 200 |
199
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) → ∀ 𝑘 ∈ ℕ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 201 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) ) |
| 202 |
190 201
|
ax-mp |
⊢ ( 𝑥 ∈ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 203 |
200 202
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) → 𝑥 ∈ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑚 𝐻 𝑘 ) ) |
| 204 |
203 9
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 ) → 𝑥 ∈ 𝐼 ) |
| 205 |
204
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 → 𝑥 ∈ 𝐼 ) ) |
| 206 |
205
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ( ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 → 𝑥 ∈ 𝐼 ) ) |
| 207 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ⊆ 𝐼 ↔ ∀ 𝑥 ∈ 𝐷 ( ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 → 𝑥 ∈ 𝐼 ) ) |
| 208 |
206 207
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ⊆ 𝐼 ) |
| 209 |
14 208
|
ssind |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐺 ‘ 𝑥 ) ≤ 𝐴 } ⊆ ( 𝐷 ∩ 𝐼 ) ) |