Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smfdmss.s | |- ( ph -> S e. SAlg ) |
|
| smfdmss.f | |- ( ph -> F e. ( SMblFn ` S ) ) |
||
| smfdmss.d | |- D = dom F |
||
| Assertion | smfdmss | |- ( ph -> D C_ U. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdmss.s | |- ( ph -> S e. SAlg ) |
|
| 2 | smfdmss.f | |- ( ph -> F e. ( SMblFn ` S ) ) |
|
| 3 | smfdmss.d | |- D = dom F |
|
| 4 | 1 3 | issmf | |- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |
| 5 | 2 4 | mpbid | |- ( ph -> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
| 6 | 5 | simp1d | |- ( ph -> D C_ U. S ) |