Metamath Proof Explorer


Theorem smfdmss

Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfdmss.s
|- ( ph -> S e. SAlg )
smfdmss.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfdmss.d
|- D = dom F
Assertion smfdmss
|- ( ph -> D C_ U. S )

Proof

Step Hyp Ref Expression
1 smfdmss.s
 |-  ( ph -> S e. SAlg )
2 smfdmss.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
3 smfdmss.d
 |-  D = dom F
4 1 3 issmf
 |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) )
5 2 4 mpbid
 |-  ( ph -> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
6 5 simp1d
 |-  ( ph -> D C_ U. S )