Step |
Hyp |
Ref |
Expression |
1 |
|
issmff.x |
|- F/_ x F |
2 |
|
issmff.s |
|- ( ph -> S e. SAlg ) |
3 |
|
issmff.d |
|- D = dom F |
4 |
2 3
|
issmf |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) ) ) |
5 |
|
nfcv |
|- F/_ y D |
6 |
1
|
nfdm |
|- F/_ x dom F |
7 |
3 6
|
nfcxfr |
|- F/_ x D |
8 |
|
nfcv |
|- F/_ x y |
9 |
1 8
|
nffv |
|- F/_ x ( F ` y ) |
10 |
|
nfcv |
|- F/_ x < |
11 |
|
nfcv |
|- F/_ x a |
12 |
9 10 11
|
nfbr |
|- F/ x ( F ` y ) < a |
13 |
|
nfv |
|- F/ y ( F ` x ) < a |
14 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
15 |
14
|
breq1d |
|- ( y = x -> ( ( F ` y ) < a <-> ( F ` x ) < a ) ) |
16 |
5 7 12 13 15
|
cbvrabw |
|- { y e. D | ( F ` y ) < a } = { x e. D | ( F ` x ) < a } |
17 |
16
|
eleq1i |
|- ( { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) |
18 |
17
|
ralbii |
|- ( A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) |
19 |
18
|
3anbi3i |
|- ( ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
20 |
19
|
a1i |
|- ( ph -> ( ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |
21 |
4 20
|
bitrd |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |