| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmff.x |  |-  F/_ x F | 
						
							| 2 |  | issmff.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | issmff.d |  |-  D = dom F | 
						
							| 4 | 2 3 | issmf |  |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) ) ) | 
						
							| 5 |  | nfcv |  |-  F/_ y D | 
						
							| 6 | 1 | nfdm |  |-  F/_ x dom F | 
						
							| 7 | 3 6 | nfcxfr |  |-  F/_ x D | 
						
							| 8 |  | nfcv |  |-  F/_ x y | 
						
							| 9 | 1 8 | nffv |  |-  F/_ x ( F ` y ) | 
						
							| 10 |  | nfcv |  |-  F/_ x < | 
						
							| 11 |  | nfcv |  |-  F/_ x a | 
						
							| 12 | 9 10 11 | nfbr |  |-  F/ x ( F ` y ) < a | 
						
							| 13 |  | nfv |  |-  F/ y ( F ` x ) < a | 
						
							| 14 |  | fveq2 |  |-  ( y = x -> ( F ` y ) = ( F ` x ) ) | 
						
							| 15 | 14 | breq1d |  |-  ( y = x -> ( ( F ` y ) < a <-> ( F ` x ) < a ) ) | 
						
							| 16 | 5 7 12 13 15 | cbvrabw |  |-  { y e. D | ( F ` y ) < a } = { x e. D | ( F ` x ) < a } | 
						
							| 17 | 16 | eleq1i |  |-  ( { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) | 
						
							| 18 | 17 | ralbii |  |-  ( A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) <-> A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) | 
						
							| 19 | 18 | 3anbi3i |  |-  ( ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ( ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { y e. D | ( F ` y ) < a } e. ( S |`t D ) ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) | 
						
							| 21 | 4 20 | bitrd |  |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |