Metamath Proof Explorer


Theorem issmfd

Description: A sufficient condition for " F being a real-valued measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfd.a
|- F/ a ph
issmfd.s
|- ( ph -> S e. SAlg )
issmfd.d
|- ( ph -> D C_ U. S )
issmfd.f
|- ( ph -> F : D --> RR )
issmfd.p
|- ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) < a } e. ( S |`t D ) )
Assertion issmfd
|- ( ph -> F e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 issmfd.a
 |-  F/ a ph
2 issmfd.s
 |-  ( ph -> S e. SAlg )
3 issmfd.d
 |-  ( ph -> D C_ U. S )
4 issmfd.f
 |-  ( ph -> F : D --> RR )
5 issmfd.p
 |-  ( ( ph /\ a e. RR ) -> { x e. D | ( F ` x ) < a } e. ( S |`t D ) )
6 4 fdmd
 |-  ( ph -> dom F = D )
7 6 3 eqsstrd
 |-  ( ph -> dom F C_ U. S )
8 4 ffdmd
 |-  ( ph -> F : dom F --> RR )
9 6 rabeqdv
 |-  ( ph -> { x e. dom F | ( F ` x ) < a } = { x e. D | ( F ` x ) < a } )
10 6 oveq2d
 |-  ( ph -> ( S |`t dom F ) = ( S |`t D ) )
11 9 10 eleq12d
 |-  ( ph -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
12 11 adantr
 |-  ( ( ph /\ a e. RR ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
13 5 12 mpbird
 |-  ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) )
14 13 ex
 |-  ( ph -> ( a e. RR -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) )
15 1 14 ralrimi
 |-  ( ph -> A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) )
16 7 8 15 3jca
 |-  ( ph -> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) )
17 eqid
 |-  dom F = dom F
18 2 17 issmf
 |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) ) )
19 16 18 mpbird
 |-  ( ph -> F e. ( SMblFn ` S ) )