Metamath Proof Explorer


Theorem issmfd

Description: A sufficient condition for " F being a real-valued measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfd.a a φ
issmfd.s φ S SAlg
issmfd.d φ D S
issmfd.f φ F : D
issmfd.p φ a x D | F x < a S 𝑡 D
Assertion issmfd φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmfd.a a φ
2 issmfd.s φ S SAlg
3 issmfd.d φ D S
4 issmfd.f φ F : D
5 issmfd.p φ a x D | F x < a S 𝑡 D
6 4 fdmd φ dom F = D
7 6 3 eqsstrd φ dom F S
8 4 ffdmd φ F : dom F
9 6 rabeqdv φ x dom F | F x < a = x D | F x < a
10 6 oveq2d φ S 𝑡 dom F = S 𝑡 D
11 9 10 eleq12d φ x dom F | F x < a S 𝑡 dom F x D | F x < a S 𝑡 D
12 11 adantr φ a x dom F | F x < a S 𝑡 dom F x D | F x < a S 𝑡 D
13 5 12 mpbird φ a x dom F | F x < a S 𝑡 dom F
14 13 ex φ a x dom F | F x < a S 𝑡 dom F
15 1 14 ralrimi φ a x dom F | F x < a S 𝑡 dom F
16 7 8 15 3jca φ dom F S F : dom F a x dom F | F x < a S 𝑡 dom F
17 eqid dom F = dom F
18 2 17 issmf φ F SMblFn S dom F S F : dom F a x dom F | F x < a S 𝑡 dom F
19 16 18 mpbird φ F SMblFn S