Metamath Proof Explorer


Theorem smfpreimaltf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimaltf.x _ x F
smfpreimaltf.s φ S SAlg
smfpreimaltf.f φ F SMblFn S
smfpreimaltf.d D = dom F
smfpreimaltf.a φ A
Assertion smfpreimaltf φ x D | F x < A S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpreimaltf.x _ x F
2 smfpreimaltf.s φ S SAlg
3 smfpreimaltf.f φ F SMblFn S
4 smfpreimaltf.d D = dom F
5 smfpreimaltf.a φ A
6 1 2 4 issmff φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D
7 3 6 mpbid φ D S F : D a x D | F x < a S 𝑡 D
8 7 simp3d φ a x D | F x < a S 𝑡 D
9 breq2 a = A F x < a F x < A
10 9 rabbidv a = A x D | F x < a = x D | F x < A
11 10 eleq1d a = A x D | F x < a S 𝑡 D x D | F x < A S 𝑡 D
12 11 rspcva A a x D | F x < a S 𝑡 D x D | F x < A S 𝑡 D
13 5 8 12 syl2anc φ x D | F x < A S 𝑡 D