| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpreimaltf.x |
|- F/_ x F |
| 2 |
|
smfpreimaltf.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfpreimaltf.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 4 |
|
smfpreimaltf.d |
|- D = dom F |
| 5 |
|
smfpreimaltf.a |
|- ( ph -> A e. RR ) |
| 6 |
1 2 4
|
issmff |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) ) |
| 7 |
3 6
|
mpbid |
|- ( ph -> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) |
| 8 |
7
|
simp3d |
|- ( ph -> A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) |
| 9 |
|
breq2 |
|- ( a = A -> ( ( F ` x ) < a <-> ( F ` x ) < A ) ) |
| 10 |
9
|
rabbidv |
|- ( a = A -> { x e. D | ( F ` x ) < a } = { x e. D | ( F ` x ) < A } ) |
| 11 |
10
|
eleq1d |
|- ( a = A -> ( { x e. D | ( F ` x ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) ) |
| 12 |
11
|
rspcva |
|- ( ( A e. RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |
| 13 |
5 8 12
|
syl2anc |
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) |