Metamath Proof Explorer


Theorem smfpreimaltf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimaltf.x
|- F/_ x F
smfpreimaltf.s
|- ( ph -> S e. SAlg )
smfpreimaltf.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpreimaltf.d
|- D = dom F
smfpreimaltf.a
|- ( ph -> A e. RR )
Assertion smfpreimaltf
|- ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpreimaltf.x
 |-  F/_ x F
2 smfpreimaltf.s
 |-  ( ph -> S e. SAlg )
3 smfpreimaltf.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
4 smfpreimaltf.d
 |-  D = dom F
5 smfpreimaltf.a
 |-  ( ph -> A e. RR )
6 1 2 4 issmff
 |-  ( ph -> ( F e. ( SMblFn ` S ) <-> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) ) )
7 3 6 mpbid
 |-  ( ph -> ( D C_ U. S /\ F : D --> RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) )
8 7 simp3d
 |-  ( ph -> A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) )
9 breq2
 |-  ( a = A -> ( ( F ` x ) < a <-> ( F ` x ) < A ) )
10 9 rabbidv
 |-  ( a = A -> { x e. D | ( F ` x ) < a } = { x e. D | ( F ` x ) < A } )
11 10 eleq1d
 |-  ( a = A -> ( { x e. D | ( F ` x ) < a } e. ( S |`t D ) <-> { x e. D | ( F ` x ) < A } e. ( S |`t D ) ) )
12 11 rspcva
 |-  ( ( A e. RR /\ A. a e. RR { x e. D | ( F ` x ) < a } e. ( S |`t D ) ) -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) )
13 5 8 12 syl2anc
 |-  ( ph -> { x e. D | ( F ` x ) < A } e. ( S |`t D ) )