Metamath Proof Explorer


Theorem smfpreimaltf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpreimaltf.x 𝑥 𝐹
smfpreimaltf.s ( 𝜑𝑆 ∈ SAlg )
smfpreimaltf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpreimaltf.d 𝐷 = dom 𝐹
smfpreimaltf.a ( 𝜑𝐴 ∈ ℝ )
Assertion smfpreimaltf ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpreimaltf.x 𝑥 𝐹
2 smfpreimaltf.s ( 𝜑𝑆 ∈ SAlg )
3 smfpreimaltf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 smfpreimaltf.d 𝐷 = dom 𝐹
5 smfpreimaltf.a ( 𝜑𝐴 ∈ ℝ )
6 1 2 4 issmff ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
7 3 6 mpbid ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
8 7 simp3d ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
9 breq2 ( 𝑎 = 𝐴 → ( ( 𝐹𝑥 ) < 𝑎 ↔ ( 𝐹𝑥 ) < 𝐴 ) )
10 9 rabbidv ( 𝑎 = 𝐴 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } )
11 10 eleq1d ( 𝑎 = 𝐴 → ( { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) ) )
12 11 rspcva ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
13 5 8 12 syl2anc ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )