Step |
Hyp |
Ref |
Expression |
1 |
|
smfpreimaltf.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
smfpreimaltf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpreimaltf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
smfpreimaltf.d |
⊢ 𝐷 = dom 𝐹 |
5 |
|
smfpreimaltf.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
6 |
1 2 4
|
issmff |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
7 |
3 6
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
8 |
7
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
9 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) < 𝐴 ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑎 = 𝐴 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ) |
11 |
10
|
eleq1d |
⊢ ( 𝑎 = 𝐴 → ( { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
12 |
11
|
rspcva |
⊢ ( ( 𝐴 ∈ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
13 |
5 8 12
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |