Step |
Hyp |
Ref |
Expression |
1 |
|
issmff.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
issmff.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
issmff.d |
⊢ 𝐷 = dom 𝐹 |
4 |
2 3
|
issmf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
6 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
7 |
3 6
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
9 |
1 8
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
12 |
9 10 11
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) < 𝑎 |
13 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 ) < 𝑎 |
14 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
16 |
5 7 12 13 15
|
cbvrabw |
⊢ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
17 |
16
|
eleq1i |
⊢ ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
18 |
17
|
ralbii |
⊢ ( ∀ 𝑎 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
19 |
18
|
3anbi3i |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
21 |
4 20
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |