| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmff.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | issmff.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | issmff.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 4 | 2 3 | issmf | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 𝐷 | 
						
							| 6 | 1 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 7 | 3 6 | nfcxfr | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 9 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 12 | 9 10 11 | nfbr | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 )  <  𝑎 | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑥 )  <  𝑎 | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  <  𝑎  ↔  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 16 | 5 7 12 13 15 | cbvrabw | ⊢ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 17 | 16 | eleq1i | ⊢ ( { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 18 | 17 | ralbii | ⊢ ( ∀ 𝑎  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 19 | 18 | 3anbi3i | ⊢ ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑦  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑦 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) | 
						
							| 21 | 4 20 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( 𝐷  ⊆  ∪  𝑆  ∧  𝐹 : 𝐷 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) ) |