Metamath Proof Explorer


Theorem issmff

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmff.x 𝑥 𝐹
issmff.s ( 𝜑𝑆 ∈ SAlg )
issmff.d 𝐷 = dom 𝐹
Assertion issmff ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 issmff.x 𝑥 𝐹
2 issmff.s ( 𝜑𝑆 ∈ SAlg )
3 issmff.d 𝐷 = dom 𝐹
4 2 3 issmf ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
5 nfcv 𝑦 𝐷
6 1 nfdm 𝑥 dom 𝐹
7 3 6 nfcxfr 𝑥 𝐷
8 nfcv 𝑥 𝑦
9 1 8 nffv 𝑥 ( 𝐹𝑦 )
10 nfcv 𝑥 <
11 nfcv 𝑥 𝑎
12 9 10 11 nfbr 𝑥 ( 𝐹𝑦 ) < 𝑎
13 nfv 𝑦 ( 𝐹𝑥 ) < 𝑎
14 fveq2 ( 𝑦 = 𝑥 → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
15 14 breq1d ( 𝑦 = 𝑥 → ( ( 𝐹𝑦 ) < 𝑎 ↔ ( 𝐹𝑥 ) < 𝑎 ) )
16 5 7 12 13 15 cbvrabw { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 }
17 16 eleq1i ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
18 17 ralbii ( ∀ 𝑎 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
19 18 3anbi3i ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
20 19 a1i ( 𝜑 → ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
21 4 20 bitrd ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )