Metamath Proof Explorer


Theorem issmff

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmff.x _xF
issmff.s φSSAlg
issmff.d D=domF
Assertion issmff φFSMblFnSDSF:DaxD|Fx<aS𝑡D

Proof

Step Hyp Ref Expression
1 issmff.x _xF
2 issmff.s φSSAlg
3 issmff.d D=domF
4 2 3 issmf φFSMblFnSDSF:DayD|Fy<aS𝑡D
5 nfcv _yD
6 1 nfdm _xdomF
7 3 6 nfcxfr _xD
8 nfcv _xy
9 1 8 nffv _xFy
10 nfcv _x<
11 nfcv _xa
12 9 10 11 nfbr xFy<a
13 nfv yFx<a
14 fveq2 y=xFy=Fx
15 14 breq1d y=xFy<aFx<a
16 5 7 12 13 15 cbvrabw yD|Fy<a=xD|Fx<a
17 16 eleq1i yD|Fy<aS𝑡DxD|Fx<aS𝑡D
18 17 ralbii ayD|Fy<aS𝑡DaxD|Fx<aS𝑡D
19 18 3anbi3i DSF:DayD|Fy<aS𝑡DDSF:DaxD|Fx<aS𝑡D
20 19 a1i φDSF:DayD|Fy<aS𝑡DDSF:DaxD|Fx<aS𝑡D
21 4 20 bitrd φFSMblFnSDSF:DaxD|Fx<aS𝑡D