Metamath Proof Explorer


Theorem issmff

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (i) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmff.x _ x F
issmff.s φ S SAlg
issmff.d D = dom F
Assertion issmff φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D

Proof

Step Hyp Ref Expression
1 issmff.x _ x F
2 issmff.s φ S SAlg
3 issmff.d D = dom F
4 2 3 issmf φ F SMblFn S D S F : D a y D | F y < a S 𝑡 D
5 nfcv _ y D
6 1 nfdm _ x dom F
7 3 6 nfcxfr _ x D
8 nfcv _ x y
9 1 8 nffv _ x F y
10 nfcv _ x <
11 nfcv _ x a
12 9 10 11 nfbr x F y < a
13 nfv y F x < a
14 fveq2 y = x F y = F x
15 14 breq1d y = x F y < a F x < a
16 5 7 12 13 15 cbvrabw y D | F y < a = x D | F x < a
17 16 eleq1i y D | F y < a S 𝑡 D x D | F x < a S 𝑡 D
18 17 ralbii a y D | F y < a S 𝑡 D a x D | F x < a S 𝑡 D
19 18 3anbi3i D S F : D a y D | F y < a S 𝑡 D D S F : D a x D | F x < a S 𝑡 D
20 19 a1i φ D S F : D a y D | F y < a S 𝑡 D D S F : D a x D | F x < a S 𝑡 D
21 4 20 bitrd φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D