Step |
Hyp |
Ref |
Expression |
1 |
|
issmfdf.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
issmfdf.a |
⊢ Ⅎ 𝑎 𝜑 |
3 |
|
issmfdf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
issmfdf.d |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
5 |
|
issmfdf.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
6 |
|
issmfdf.p |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
7 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = 𝐷 ) |
8 |
7 4
|
eqsstrd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
9 |
5
|
ffdmd |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
10 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
12 |
10 11
|
rabeqf |
⊢ ( dom 𝐹 = 𝐷 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
14 |
7
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t dom 𝐹 ) = ( 𝑆 ↾t 𝐷 ) ) |
15 |
13 14
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
17 |
6 16
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
18 |
17
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ ℝ → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
19 |
2 18
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
20 |
8 9 19
|
3jca |
⊢ ( 𝜑 → ( dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹 : dom 𝐹 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) |
21 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
22 |
1 3 21
|
issmff |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹 : dom 𝐹 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) ) ) |
23 |
20 22
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |