Metamath Proof Explorer


Theorem issmfdf

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdf.x 𝑥 𝐹
issmfdf.a 𝑎 𝜑
issmfdf.s ( 𝜑𝑆 ∈ SAlg )
issmfdf.d ( 𝜑𝐷 𝑆 )
issmfdf.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
issmfdf.p ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
Assertion issmfdf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issmfdf.x 𝑥 𝐹
2 issmfdf.a 𝑎 𝜑
3 issmfdf.s ( 𝜑𝑆 ∈ SAlg )
4 issmfdf.d ( 𝜑𝐷 𝑆 )
5 issmfdf.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
6 issmfdf.p ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) )
7 5 fdmd ( 𝜑 → dom 𝐹 = 𝐷 )
8 7 4 eqsstrd ( 𝜑 → dom 𝐹 𝑆 )
9 5 ffdmd ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
10 1 nfdm 𝑥 dom 𝐹
11 nfcv 𝑥 𝐷
12 10 11 rabeqf ( dom 𝐹 = 𝐷 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } )
13 7 12 syl ( 𝜑 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } )
14 7 oveq2d ( 𝜑 → ( 𝑆t dom 𝐹 ) = ( 𝑆t 𝐷 ) )
15 13 14 eleq12d ( 𝜑 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
16 15 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
17 6 16 mpbird ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) )
18 17 ex ( 𝜑 → ( 𝑎 ∈ ℝ → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) ) )
19 2 18 ralrimi ( 𝜑 → ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) )
20 8 9 19 3jca ( 𝜑 → ( dom 𝐹 𝑆𝐹 : dom 𝐹 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) ) )
21 eqid dom 𝐹 = dom 𝐹
22 1 3 21 issmff ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( dom 𝐹 𝑆𝐹 : dom 𝐹 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) ) ) )
23 20 22 mpbird ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )