| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfdf.x | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | issmfdf.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 3 |  | issmfdf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | issmfdf.d | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 5 |  | issmfdf.f | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 6 |  | issmfdf.p | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 7 | 5 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐷 ) | 
						
							| 8 | 7 4 | eqsstrd | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 9 | 5 | ffdmd | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 10 | 1 | nfdm | ⊢ Ⅎ 𝑥 dom  𝐹 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 12 | 10 11 | rabeqf | ⊢ ( dom  𝐹  =  𝐷  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 14 | 7 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  ↾t  dom  𝐹 )  =  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 15 | 13 14 | eleq12d | ⊢ ( 𝜑  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 17 | 6 16 | mpbird | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝜑  →  ( 𝑎  ∈  ℝ  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 19 | 2 18 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 20 | 8 9 19 | 3jca | ⊢ ( 𝜑  →  ( dom  𝐹  ⊆  ∪  𝑆  ∧  𝐹 : dom  𝐹 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 21 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 22 | 1 3 21 | issmff | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( dom  𝐹  ⊆  ∪  𝑆  ∧  𝐹 : dom  𝐹 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) ) | 
						
							| 23 | 20 22 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) |