| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sssmf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | sssmf.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 4 |  | inss2 | ⊢ ( 𝐵  ∩  dom  𝐹 )  ⊆  dom  𝐹 | 
						
							| 5 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 6 | 1 2 5 | smfdmss | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 7 | 4 6 | sstrid | ⊢ ( 𝜑  →  ( 𝐵  ∩  dom  𝐹 )  ⊆  ∪  𝑆 ) | 
						
							| 8 | 1 2 5 | smff | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 9 | 4 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ∩  dom  𝐹 )  ⊆  dom  𝐹 ) | 
						
							| 10 |  | fssres | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℝ  ∧  ( 𝐵  ∩  dom  𝐹 )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) : ( 𝐵  ∩  dom  𝐹 ) ⟶ ℝ ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) : ( 𝐵  ∩  dom  𝐹 ) ⟶ ℝ ) | 
						
							| 12 | 8 | freld | ⊢ ( 𝜑  →  Rel  𝐹 ) | 
						
							| 13 |  | resindm | ⊢ ( Rel  𝐹  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 )  =  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 16 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 18 | 15 17 | feq12d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐵 ) : dom  ( 𝐹  ↾  𝐵 ) ⟶ ℝ  ↔  ( 𝐹  ↾  ( 𝐵  ∩  dom  𝐹 ) ) : ( 𝐵  ∩  dom  𝐹 ) ⟶ ℝ ) ) | 
						
							| 19 | 11 18 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 ) : dom  ( 𝐹  ↾  𝐵 ) ⟶ ℝ ) | 
						
							| 20 | 17 | feq2d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐵 ) : dom  ( 𝐹  ↾  𝐵 ) ⟶ ℝ  ↔  ( 𝐹  ↾  𝐵 ) : ( 𝐵  ∩  dom  𝐹 ) ⟶ ℝ ) ) | 
						
							| 21 | 19 20 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 ) : ( 𝐵  ∩  dom  𝐹 ) ⟶ ℝ ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 23 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 25 | 22 23 5 24 | smfpreimalt | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 26 | 2 | dmexd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 27 |  | elrest | ⊢ ( ( 𝑆  ∈  SAlg  ∧  dom  𝐹  ∈  V )  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  ∃ 𝑤  ∈  𝑆 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) ) ) | 
						
							| 28 | 1 26 27 | syl2anc | ⊢ ( 𝜑  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  ∃ 𝑤  ∈  𝑆 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  ∃ 𝑤  ∈  𝑆 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) ) ) | 
						
							| 30 | 25 29 | mpbid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ∃ 𝑤  ∈  𝑆 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) ) | 
						
							| 31 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  →  𝑥  ∈  𝐵 ) | 
						
							| 32 | 31 | fvresd | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  →  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  →  ( ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎  ↔  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 34 | 33 | rabbiia | ⊢ { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 35 | 34 | a1i | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 36 |  | rabss2 | ⊢ ( ( 𝐵  ∩  dom  𝐹 )  ⊆  dom  𝐹  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 37 | 4 36 | ax-mp | ⊢ { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 38 |  | id | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) ) | 
						
							| 39 |  | inss1 | ⊢ ( 𝑤  ∩  dom  𝐹 )  ⊆  𝑤 | 
						
							| 40 | 39 | a1i | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ( 𝑤  ∩  dom  𝐹 )  ⊆  𝑤 ) | 
						
							| 41 | 38 40 | eqsstrd | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  𝑤 ) | 
						
							| 42 | 37 41 | sstrid | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  𝑤 ) | 
						
							| 43 |  | ssrab2 | ⊢ { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  ( 𝐵  ∩  dom  𝐹 ) | 
						
							| 44 | 43 | a1i | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 45 | 42 44 | ssind | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ⊆  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 46 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑤  ∩  dom  𝐹 ) | 
						
							| 48 | 46 47 | nfeq | ⊢ Ⅎ 𝑥 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) | 
						
							| 49 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  →  𝑥  ∈  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  𝑥  ∈  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 51 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  →  𝑥  ∈  𝑤 ) | 
						
							| 52 | 4 | sseli | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 53 | 49 52 | syl | ⊢ ( 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  →  𝑥  ∈  dom  𝐹 ) | 
						
							| 54 | 51 53 | elind | ⊢ ( 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  →  𝑥  ∈  ( 𝑤  ∩  dom  𝐹 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  𝑥  ∈  ( 𝑤  ∩  dom  𝐹 ) ) | 
						
							| 56 | 38 | eqcomd | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ( 𝑤  ∩  dom  𝐹 )  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  ( 𝑤  ∩  dom  𝐹 )  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 58 | 55 57 | eleqtrd | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  𝑥  ∈  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 59 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ↔  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 60 | 59 | biimpi | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  →  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 61 | 60 | simprd | ⊢ ( 𝑥  ∈  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  →  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) | 
						
							| 62 | 58 61 | syl | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) | 
						
							| 63 | 50 62 | jca | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 64 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ↔  ( 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∧  ( 𝐹 ‘ 𝑥 )  <  𝑎 ) ) | 
						
							| 65 | 63 64 | sylibr | ⊢ ( ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  ∧  𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) )  →  𝑥  ∈  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 66 | 65 | ex | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ( 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  →  𝑥  ∈  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) ) | 
						
							| 67 | 48 66 | ralrimi | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ∀ 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) 𝑥  ∈  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 68 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 69 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 70 | 68 69 | dfss3f | ⊢ ( ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  ⊆  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ↔  ∀ 𝑥  ∈  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) 𝑥  ∈  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 71 | 67 70 | sylibr | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  ⊆  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 72 | 38 38 38 71 | 4syl | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  ⊆  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 73 | 45 72 | eqssd | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 74 | 35 73 | eqtrd | ⊢ ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 76 | 75 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 77 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  𝑆  ∈  SAlg ) | 
						
							| 78 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  𝜑 ) | 
						
							| 79 | 26 9 | ssexd | ⊢ ( 𝜑  →  ( 𝐵  ∩  dom  𝐹 )  ∈  V ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  ( 𝐵  ∩  dom  𝐹 )  ∈  V ) | 
						
							| 81 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  𝑤  ∈  𝑆 ) | 
						
							| 82 |  | eqid | ⊢ ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  =  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 83 | 77 80 81 82 | elrestd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  ( 𝑤  ∩  ( 𝐵  ∩  dom  𝐹 ) )  ∈  ( 𝑆  ↾t  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 84 | 76 83 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑤  ∈  𝑆  ∧  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 ) )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 85 | 84 | 3exp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑤  ∈  𝑆  →  ( { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( 𝐵  ∩  dom  𝐹 ) ) ) ) ) | 
						
							| 86 | 85 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∃ 𝑤  ∈  𝑆 { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( 𝑤  ∩  dom  𝐹 )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( 𝐵  ∩  dom  𝐹 ) ) ) ) | 
						
							| 87 | 30 86 | mpd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( 𝐵  ∩  dom  𝐹 )  ∣  ( ( 𝐹  ↾  𝐵 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( 𝐵  ∩  dom  𝐹 ) ) ) | 
						
							| 88 | 3 1 7 21 87 | issmfd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) |