| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sssmf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 2 |
|
sssmf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 4 |
|
inss2 |
⊢ ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
| 5 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
| 6 |
1 2 5
|
smfdmss |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
| 7 |
4 6
|
sstrid |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ⊆ ∪ 𝑆 ) |
| 8 |
1 2 5
|
smff |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 9 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 ) |
| 10 |
|
fssres |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
| 12 |
8
|
freld |
⊢ ( 𝜑 → Rel 𝐹 ) |
| 13 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 16 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) ) |
| 18 |
15 17
|
feq12d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ↔ ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) ) |
| 19 |
11 18
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ) |
| 20 |
17
|
feq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ↔ ( 𝐹 ↾ 𝐵 ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) ) |
| 21 |
19 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
| 22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
| 25 |
22 23 5 24
|
smfpreimalt |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
| 26 |
2
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
| 27 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
| 28 |
1 26 27
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
| 30 |
25 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) |
| 31 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑥 ∈ 𝐵 ) |
| 32 |
31
|
fvresd |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 33 |
32
|
breq1d |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
| 34 |
33
|
rabbiia |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
| 35 |
34
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 36 |
|
rabss2 |
⊢ ( ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 37 |
4 36
|
ax-mp |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
| 38 |
|
id |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) |
| 39 |
|
inss1 |
⊢ ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝑤 |
| 40 |
39
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝑤 ) |
| 41 |
38 40
|
eqsstrd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ 𝑤 ) |
| 42 |
37 41
|
sstrid |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ 𝑤 ) |
| 43 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝐵 ∩ dom 𝐹 ) |
| 44 |
43
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝐵 ∩ dom 𝐹 ) ) |
| 45 |
42 44
|
ssind |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 46 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
| 47 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑤 ∩ dom 𝐹 ) |
| 48 |
46 47
|
nfeq |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) |
| 49 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
| 50 |
49
|
adantl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
| 51 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ 𝑤 ) |
| 52 |
4
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
| 53 |
49 52
|
syl |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 54 |
51 53
|
elind |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝑤 ∩ dom 𝐹 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ ( 𝑤 ∩ dom 𝐹 ) ) |
| 56 |
38
|
eqcomd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ dom 𝐹 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 57 |
56
|
adantr |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝑤 ∩ dom 𝐹 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 58 |
55 57
|
eleqtrd |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 59 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
| 60 |
59
|
biimpi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } → ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
| 61 |
60
|
simprd |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } → ( 𝐹 ‘ 𝑥 ) < 𝑎 ) |
| 62 |
58 61
|
syl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑎 ) |
| 63 |
50 62
|
jca |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
| 64 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
| 65 |
63 64
|
sylibr |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 66 |
65
|
ex |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) ) |
| 67 |
48 66
|
ralrimi |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ∀ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) |
| 69 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
| 70 |
68 69
|
dfss3f |
⊢ ( ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ∀ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 71 |
67 70
|
sylibr |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 72 |
38 38 38 71
|
4syl |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
| 73 |
45 72
|
eqssd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 74 |
35 73
|
eqtrd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 76 |
75
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 77 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝑆 ∈ SAlg ) |
| 78 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝜑 ) |
| 79 |
26 9
|
ssexd |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ∈ V ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → ( 𝐵 ∩ dom 𝐹 ) ∈ V ) |
| 81 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝑤 ∈ 𝑆 ) |
| 82 |
|
eqid |
⊢ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) |
| 83 |
77 80 81 82
|
elrestd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 84 |
76 83
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 85 |
84
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑤 ∈ 𝑆 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) ) ) |
| 86 |
85
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) ) |
| 87 |
30 86
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
| 88 |
3 1 7 21 87
|
issmfd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |