Step |
Hyp |
Ref |
Expression |
1 |
|
sssmf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
sssmf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
3 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
4 |
|
inss2 |
⊢ ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 |
5 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
6 |
1 2 5
|
smfdmss |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
7 |
4 6
|
sstrid |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ⊆ ∪ 𝑆 ) |
8 |
1 2 5
|
smff |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 ) |
10 |
|
fssres |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
12 |
8
|
freld |
⊢ ( 𝜑 → Rel 𝐹 ) |
13 |
|
resindm |
⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝐵 ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) = ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) ) |
16 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) ) |
18 |
15 17
|
feq12d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ↔ ( 𝐹 ↾ ( 𝐵 ∩ dom 𝐹 ) ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) ) |
19 |
11 18
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ) |
20 |
17
|
feq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) : dom ( 𝐹 ↾ 𝐵 ) ⟶ ℝ ↔ ( 𝐹 ↾ 𝐵 ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) ) |
21 |
19 20
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : ( 𝐵 ∩ dom 𝐹 ) ⟶ ℝ ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
25 |
22 23 5 24
|
smfpreimalt |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
26 |
2
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
27 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
28 |
1 26 27
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ↔ ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) ) |
30 |
25 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) |
31 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑥 ∈ 𝐵 ) |
32 |
31
|
fvresd |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
33 |
32
|
breq1d |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
34 |
33
|
rabbiia |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
35 |
34
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
36 |
|
rabss2 |
⊢ ( ( 𝐵 ∩ dom 𝐹 ) ⊆ dom 𝐹 → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
37 |
4 36
|
ax-mp |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
38 |
|
id |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) |
39 |
|
inss1 |
⊢ ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝑤 |
40 |
39
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ dom 𝐹 ) ⊆ 𝑤 ) |
41 |
38 40
|
eqsstrd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ 𝑤 ) |
42 |
37 41
|
sstrid |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ 𝑤 ) |
43 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝐵 ∩ dom 𝐹 ) |
44 |
43
|
a1i |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝐵 ∩ dom 𝐹 ) ) |
45 |
42 44
|
ssind |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ⊆ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
46 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
47 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑤 ∩ dom 𝐹 ) |
48 |
46 47
|
nfeq |
⊢ Ⅎ 𝑥 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) |
49 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
50 |
49
|
adantl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
51 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ 𝑤 ) |
52 |
4
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
53 |
49 52
|
syl |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
54 |
51 53
|
elind |
⊢ ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝑤 ∩ dom 𝐹 ) ) |
55 |
54
|
adantl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ ( 𝑤 ∩ dom 𝐹 ) ) |
56 |
38
|
eqcomd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ dom 𝐹 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
57 |
56
|
adantr |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝑤 ∩ dom 𝐹 ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
58 |
55 57
|
eleqtrd |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
59 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
60 |
59
|
biimpi |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } → ( 𝑥 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
61 |
60
|
simprd |
⊢ ( 𝑥 ∈ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } → ( 𝐹 ‘ 𝑥 ) < 𝑎 ) |
62 |
58 61
|
syl |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝐹 ‘ 𝑥 ) < 𝑎 ) |
63 |
50 62
|
jca |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
64 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ( 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∧ ( 𝐹 ‘ 𝑥 ) < 𝑎 ) ) |
65 |
63 64
|
sylibr |
⊢ ( ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ∧ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) → 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
66 |
65
|
ex |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) ) |
67 |
48 66
|
ralrimi |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ∀ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
68 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) |
69 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
70 |
68 69
|
dfss3f |
⊢ ( ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ↔ ∀ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
71 |
67 70
|
sylibr |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
72 |
71
|
sseld |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) → 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) ) |
73 |
48 72
|
ralrimi |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ∀ 𝑥 ∈ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) 𝑥 ∈ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
74 |
73 70
|
sylibr |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ⊆ { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
75 |
45 74
|
eqssd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
76 |
35 75
|
eqtrd |
⊢ ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
77 |
76
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
78 |
77
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ) |
79 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝑆 ∈ SAlg ) |
80 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝜑 ) |
81 |
26 9
|
ssexd |
⊢ ( 𝜑 → ( 𝐵 ∩ dom 𝐹 ) ∈ V ) |
82 |
80 81
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → ( 𝐵 ∩ dom 𝐹 ) ∈ V ) |
83 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → 𝑤 ∈ 𝑆 ) |
84 |
|
eqid |
⊢ ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) = ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) |
85 |
79 82 83 84
|
elrestd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → ( 𝑤 ∩ ( 𝐵 ∩ dom 𝐹 ) ) ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
86 |
78 85
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑤 ∈ 𝑆 ∧ { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
87 |
86
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑤 ∈ 𝑆 → ( { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) ) ) |
88 |
87
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ∃ 𝑤 ∈ 𝑆 { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑤 ∩ dom 𝐹 ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) ) |
89 |
30 88
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ( 𝐵 ∩ dom 𝐹 ) ∣ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( 𝐵 ∩ dom 𝐹 ) ) ) |
90 |
3 1 7 21 89
|
issmfd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |