Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
smfdmss
Metamath Proof Explorer
Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a
subset of the set underlying the sigma-algebra. (Contributed by Glauco
Siliprandi , 26-Jun-2021)
Ref
Expression
Hypotheses
smfdmss.s
⊢ ( 𝜑 → 𝑆 ∈ SAlg )
smfdmss.f
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfdmss.d
⊢ 𝐷 = dom 𝐹
Assertion
smfdmss
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 )
Proof
Step
Hyp
Ref
Expression
1
smfdmss.s
⊢ ( 𝜑 → 𝑆 ∈ SAlg )
2
smfdmss.f
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3
smfdmss.d
⊢ 𝐷 = dom 𝐹
4
1 3
issmf
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) )
5
2 4
mpbid
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) )
6
5
simp1d
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 )