Metamath Proof Explorer


Theorem smfdmss

Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfdmss.s ( 𝜑𝑆 ∈ SAlg )
smfdmss.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfdmss.d 𝐷 = dom 𝐹
Assertion smfdmss ( 𝜑𝐷 𝑆 )

Proof

Step Hyp Ref Expression
1 smfdmss.s ( 𝜑𝑆 ∈ SAlg )
2 smfdmss.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfdmss.d 𝐷 = dom 𝐹
4 1 3 issmf ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
5 2 4 mpbid ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
6 5 simp1d ( 𝜑𝐷 𝑆 )