Metamath Proof Explorer


Theorem smfdmss

Description: The domain of a function measurable w.r.t. to a sigma-algebra, is a subset of the set underlying the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfdmss.s φ S SAlg
smfdmss.f φ F SMblFn S
smfdmss.d D = dom F
Assertion smfdmss φ D S

Proof

Step Hyp Ref Expression
1 smfdmss.s φ S SAlg
2 smfdmss.f φ F SMblFn S
3 smfdmss.d D = dom F
4 1 3 issmf φ F SMblFn S D S F : D a x D | F x < a S 𝑡 D
5 2 4 mpbid φ D S F : D a x D | F x < a S 𝑡 D
6 5 simp1d φ D S