Metamath Proof Explorer


Theorem sssmf

Description: The restriction of a sigma-measurable function, is sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses sssmf.s φSSAlg
sssmf.f φFSMblFnS
Assertion sssmf φFBSMblFnS

Proof

Step Hyp Ref Expression
1 sssmf.s φSSAlg
2 sssmf.f φFSMblFnS
3 nfv aφ
4 inss2 BdomFdomF
5 eqid domF=domF
6 1 2 5 smfdmss φdomFS
7 4 6 sstrid φBdomFS
8 1 2 5 smff φF:domF
9 4 a1i φBdomFdomF
10 fssres F:domFBdomFdomFFBdomF:BdomF
11 8 9 10 syl2anc φFBdomF:BdomF
12 8 freld φRelF
13 resindm RelFFBdomF=FB
14 12 13 syl φFBdomF=FB
15 14 eqcomd φFB=FBdomF
16 dmres domFB=BdomF
17 16 a1i φdomFB=BdomF
18 15 17 feq12d φFB:domFBFBdomF:BdomF
19 11 18 mpbird φFB:domFB
20 17 feq2d φFB:domFBFB:BdomF
21 19 20 mpbid φFB:BdomF
22 1 adantr φaSSAlg
23 2 adantr φaFSMblFnS
24 simpr φaa
25 22 23 5 24 smfpreimalt φaxdomF|Fx<aS𝑡domF
26 2 dmexd φdomFV
27 elrest SSAlgdomFVxdomF|Fx<aS𝑡domFwSxdomF|Fx<a=wdomF
28 1 26 27 syl2anc φxdomF|Fx<aS𝑡domFwSxdomF|Fx<a=wdomF
29 28 adantr φaxdomF|Fx<aS𝑡domFwSxdomF|Fx<a=wdomF
30 25 29 mpbid φawSxdomF|Fx<a=wdomF
31 elinel1 xBdomFxB
32 31 fvresd xBdomFFBx=Fx
33 32 breq1d xBdomFFBx<aFx<a
34 33 rabbiia xBdomF|FBx<a=xBdomF|Fx<a
35 34 a1i xdomF|Fx<a=wdomFxBdomF|FBx<a=xBdomF|Fx<a
36 rabss2 BdomFdomFxBdomF|Fx<axdomF|Fx<a
37 4 36 ax-mp xBdomF|Fx<axdomF|Fx<a
38 id xdomF|Fx<a=wdomFxdomF|Fx<a=wdomF
39 inss1 wdomFw
40 39 a1i xdomF|Fx<a=wdomFwdomFw
41 38 40 eqsstrd xdomF|Fx<a=wdomFxdomF|Fx<aw
42 37 41 sstrid xdomF|Fx<a=wdomFxBdomF|Fx<aw
43 ssrab2 xBdomF|Fx<aBdomF
44 43 a1i xdomF|Fx<a=wdomFxBdomF|Fx<aBdomF
45 42 44 ssind xdomF|Fx<a=wdomFxBdomF|Fx<awBdomF
46 nfrab1 _xxdomF|Fx<a
47 nfcv _xwdomF
48 46 47 nfeq xxdomF|Fx<a=wdomF
49 elinel2 xwBdomFxBdomF
50 49 adantl xdomF|Fx<a=wdomFxwBdomFxBdomF
51 elinel1 xwBdomFxw
52 4 sseli xBdomFxdomF
53 49 52 syl xwBdomFxdomF
54 51 53 elind xwBdomFxwdomF
55 54 adantl xdomF|Fx<a=wdomFxwBdomFxwdomF
56 38 eqcomd xdomF|Fx<a=wdomFwdomF=xdomF|Fx<a
57 56 adantr xdomF|Fx<a=wdomFxwBdomFwdomF=xdomF|Fx<a
58 55 57 eleqtrd xdomF|Fx<a=wdomFxwBdomFxxdomF|Fx<a
59 rabid xxdomF|Fx<axdomFFx<a
60 59 biimpi xxdomF|Fx<axdomFFx<a
61 60 simprd xxdomF|Fx<aFx<a
62 58 61 syl xdomF|Fx<a=wdomFxwBdomFFx<a
63 50 62 jca xdomF|Fx<a=wdomFxwBdomFxBdomFFx<a
64 rabid xxBdomF|Fx<axBdomFFx<a
65 63 64 sylibr xdomF|Fx<a=wdomFxwBdomFxxBdomF|Fx<a
66 65 ex xdomF|Fx<a=wdomFxwBdomFxxBdomF|Fx<a
67 48 66 ralrimi xdomF|Fx<a=wdomFxwBdomFxxBdomF|Fx<a
68 nfcv _xwBdomF
69 nfrab1 _xxBdomF|Fx<a
70 68 69 dfss3f wBdomFxBdomF|Fx<axwBdomFxxBdomF|Fx<a
71 67 70 sylibr xdomF|Fx<a=wdomFwBdomFxBdomF|Fx<a
72 71 sseld xdomF|Fx<a=wdomFxwBdomFxxBdomF|Fx<a
73 48 72 ralrimi xdomF|Fx<a=wdomFxwBdomFxxBdomF|Fx<a
74 73 70 sylibr xdomF|Fx<a=wdomFwBdomFxBdomF|Fx<a
75 45 74 eqssd xdomF|Fx<a=wdomFxBdomF|Fx<a=wBdomF
76 35 75 eqtrd xdomF|Fx<a=wdomFxBdomF|FBx<a=wBdomF
77 76 adantl φaxdomF|Fx<a=wdomFxBdomF|FBx<a=wBdomF
78 77 3adant2 φawSxdomF|Fx<a=wdomFxBdomF|FBx<a=wBdomF
79 22 3ad2ant1 φawSxdomF|Fx<a=wdomFSSAlg
80 simp1l φawSxdomF|Fx<a=wdomFφ
81 26 9 ssexd φBdomFV
82 80 81 syl φawSxdomF|Fx<a=wdomFBdomFV
83 simp2 φawSxdomF|Fx<a=wdomFwS
84 eqid wBdomF=wBdomF
85 79 82 83 84 elrestd φawSxdomF|Fx<a=wdomFwBdomFS𝑡BdomF
86 78 85 eqeltrd φawSxdomF|Fx<a=wdomFxBdomF|FBx<aS𝑡BdomF
87 86 3exp φawSxdomF|Fx<a=wdomFxBdomF|FBx<aS𝑡BdomF
88 87 rexlimdv φawSxdomF|Fx<a=wdomFxBdomF|FBx<aS𝑡BdomF
89 30 88 mpd φaxBdomF|FBx<aS𝑡BdomF
90 3 1 7 21 89 issmfd φFBSMblFnS