Step |
Hyp |
Ref |
Expression |
1 |
|
sssmf.s |
|
2 |
|
sssmf.f |
|
3 |
|
nfv |
|
4 |
|
inss2 |
|
5 |
|
eqid |
|
6 |
1 2 5
|
smfdmss |
|
7 |
4 6
|
sstrid |
|
8 |
1 2 5
|
smff |
|
9 |
4
|
a1i |
|
10 |
|
fssres |
|
11 |
8 9 10
|
syl2anc |
|
12 |
8
|
freld |
|
13 |
|
resindm |
|
14 |
12 13
|
syl |
|
15 |
14
|
eqcomd |
|
16 |
|
dmres |
|
17 |
16
|
a1i |
|
18 |
15 17
|
feq12d |
|
19 |
11 18
|
mpbird |
|
20 |
17
|
feq2d |
|
21 |
19 20
|
mpbid |
|
22 |
1
|
adantr |
|
23 |
2
|
adantr |
|
24 |
|
simpr |
|
25 |
22 23 5 24
|
smfpreimalt |
|
26 |
2
|
dmexd |
|
27 |
|
elrest |
|
28 |
1 26 27
|
syl2anc |
|
29 |
28
|
adantr |
|
30 |
25 29
|
mpbid |
|
31 |
|
elinel1 |
|
32 |
31
|
fvresd |
|
33 |
32
|
breq1d |
|
34 |
33
|
rabbiia |
|
35 |
34
|
a1i |
|
36 |
|
rabss2 |
|
37 |
4 36
|
ax-mp |
|
38 |
|
id |
|
39 |
|
inss1 |
|
40 |
39
|
a1i |
|
41 |
38 40
|
eqsstrd |
|
42 |
37 41
|
sstrid |
|
43 |
|
ssrab2 |
|
44 |
43
|
a1i |
|
45 |
42 44
|
ssind |
|
46 |
|
nfrab1 |
|
47 |
|
nfcv |
|
48 |
46 47
|
nfeq |
|
49 |
|
elinel2 |
|
50 |
49
|
adantl |
|
51 |
|
elinel1 |
|
52 |
4
|
sseli |
|
53 |
49 52
|
syl |
|
54 |
51 53
|
elind |
|
55 |
54
|
adantl |
|
56 |
38
|
eqcomd |
|
57 |
56
|
adantr |
|
58 |
55 57
|
eleqtrd |
|
59 |
|
rabid |
|
60 |
59
|
biimpi |
|
61 |
60
|
simprd |
|
62 |
58 61
|
syl |
|
63 |
50 62
|
jca |
|
64 |
|
rabid |
|
65 |
63 64
|
sylibr |
|
66 |
65
|
ex |
|
67 |
48 66
|
ralrimi |
|
68 |
|
nfcv |
|
69 |
|
nfrab1 |
|
70 |
68 69
|
dfss3f |
|
71 |
67 70
|
sylibr |
|
72 |
71
|
sseld |
|
73 |
48 72
|
ralrimi |
|
74 |
73 70
|
sylibr |
|
75 |
45 74
|
eqssd |
|
76 |
35 75
|
eqtrd |
|
77 |
76
|
adantl |
|
78 |
77
|
3adant2 |
|
79 |
22
|
3ad2ant1 |
|
80 |
|
simp1l |
|
81 |
26 9
|
ssexd |
|
82 |
80 81
|
syl |
|
83 |
|
simp2 |
|
84 |
|
eqid |
|
85 |
79 82 83 84
|
elrestd |
|
86 |
78 85
|
eqeltrd |
|
87 |
86
|
3exp |
|
88 |
87
|
rexlimdv |
|
89 |
30 88
|
mpd |
|
90 |
3 1 7 21 89
|
issmfd |
|