Step |
Hyp |
Ref |
Expression |
1 |
|
sssmf.s |
|- ( ph -> S e. SAlg ) |
2 |
|
sssmf.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
3 |
|
nfv |
|- F/ a ph |
4 |
|
inss2 |
|- ( B i^i dom F ) C_ dom F |
5 |
|
eqid |
|- dom F = dom F |
6 |
1 2 5
|
smfdmss |
|- ( ph -> dom F C_ U. S ) |
7 |
4 6
|
sstrid |
|- ( ph -> ( B i^i dom F ) C_ U. S ) |
8 |
1 2 5
|
smff |
|- ( ph -> F : dom F --> RR ) |
9 |
4
|
a1i |
|- ( ph -> ( B i^i dom F ) C_ dom F ) |
10 |
|
fssres |
|- ( ( F : dom F --> RR /\ ( B i^i dom F ) C_ dom F ) -> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) |
11 |
8 9 10
|
syl2anc |
|- ( ph -> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) |
12 |
8
|
freld |
|- ( ph -> Rel F ) |
13 |
|
resindm |
|- ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
15 |
14
|
eqcomd |
|- ( ph -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
16 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
17 |
16
|
a1i |
|- ( ph -> dom ( F |` B ) = ( B i^i dom F ) ) |
18 |
15 17
|
feq12d |
|- ( ph -> ( ( F |` B ) : dom ( F |` B ) --> RR <-> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) ) |
19 |
11 18
|
mpbird |
|- ( ph -> ( F |` B ) : dom ( F |` B ) --> RR ) |
20 |
17
|
feq2d |
|- ( ph -> ( ( F |` B ) : dom ( F |` B ) --> RR <-> ( F |` B ) : ( B i^i dom F ) --> RR ) ) |
21 |
19 20
|
mpbid |
|- ( ph -> ( F |` B ) : ( B i^i dom F ) --> RR ) |
22 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
23 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` S ) ) |
24 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
25 |
22 23 5 24
|
smfpreimalt |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
26 |
2
|
dmexd |
|- ( ph -> dom F e. _V ) |
27 |
|
elrest |
|- ( ( S e. SAlg /\ dom F e. _V ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
28 |
1 26 27
|
syl2anc |
|- ( ph -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
30 |
25 29
|
mpbid |
|- ( ( ph /\ a e. RR ) -> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) |
31 |
|
elinel1 |
|- ( x e. ( B i^i dom F ) -> x e. B ) |
32 |
31
|
fvresd |
|- ( x e. ( B i^i dom F ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
33 |
32
|
breq1d |
|- ( x e. ( B i^i dom F ) -> ( ( ( F |` B ) ` x ) < a <-> ( F ` x ) < a ) ) |
34 |
33
|
rabbiia |
|- { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = { x e. ( B i^i dom F ) | ( F ` x ) < a } |
35 |
34
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
36 |
|
rabss2 |
|- ( ( B i^i dom F ) C_ dom F -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ { x e. dom F | ( F ` x ) < a } ) |
37 |
4 36
|
ax-mp |
|- { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ { x e. dom F | ( F ` x ) < a } |
38 |
|
id |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) |
39 |
|
inss1 |
|- ( w i^i dom F ) C_ w |
40 |
39
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i dom F ) C_ w ) |
41 |
38 40
|
eqsstrd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. dom F | ( F ` x ) < a } C_ w ) |
42 |
37 41
|
sstrid |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ w ) |
43 |
|
ssrab2 |
|- { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( B i^i dom F ) |
44 |
43
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( B i^i dom F ) ) |
45 |
42 44
|
ssind |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( w i^i ( B i^i dom F ) ) ) |
46 |
|
nfrab1 |
|- F/_ x { x e. dom F | ( F ` x ) < a } |
47 |
|
nfcv |
|- F/_ x ( w i^i dom F ) |
48 |
46 47
|
nfeq |
|- F/ x { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) |
49 |
|
elinel2 |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. ( B i^i dom F ) ) |
50 |
49
|
adantl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. ( B i^i dom F ) ) |
51 |
|
elinel1 |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. w ) |
52 |
4
|
sseli |
|- ( x e. ( B i^i dom F ) -> x e. dom F ) |
53 |
49 52
|
syl |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. dom F ) |
54 |
51 53
|
elind |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. ( w i^i dom F ) ) |
55 |
54
|
adantl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. ( w i^i dom F ) ) |
56 |
38
|
eqcomd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i dom F ) = { x e. dom F | ( F ` x ) < a } ) |
57 |
56
|
adantr |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( w i^i dom F ) = { x e. dom F | ( F ` x ) < a } ) |
58 |
55 57
|
eleqtrd |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. { x e. dom F | ( F ` x ) < a } ) |
59 |
|
rabid |
|- ( x e. { x e. dom F | ( F ` x ) < a } <-> ( x e. dom F /\ ( F ` x ) < a ) ) |
60 |
59
|
biimpi |
|- ( x e. { x e. dom F | ( F ` x ) < a } -> ( x e. dom F /\ ( F ` x ) < a ) ) |
61 |
60
|
simprd |
|- ( x e. { x e. dom F | ( F ` x ) < a } -> ( F ` x ) < a ) |
62 |
58 61
|
syl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( F ` x ) < a ) |
63 |
50 62
|
jca |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( x e. ( B i^i dom F ) /\ ( F ` x ) < a ) ) |
64 |
|
rabid |
|- ( x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } <-> ( x e. ( B i^i dom F ) /\ ( F ` x ) < a ) ) |
65 |
63 64
|
sylibr |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
66 |
65
|
ex |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( x e. ( w i^i ( B i^i dom F ) ) -> x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) ) |
67 |
48 66
|
ralrimi |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> A. x e. ( w i^i ( B i^i dom F ) ) x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
68 |
|
nfcv |
|- F/_ x ( w i^i ( B i^i dom F ) ) |
69 |
|
nfrab1 |
|- F/_ x { x e. ( B i^i dom F ) | ( F ` x ) < a } |
70 |
68 69
|
dfss3f |
|- ( ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } <-> A. x e. ( w i^i ( B i^i dom F ) ) x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
71 |
67 70
|
sylibr |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
72 |
71
|
sseld |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( x e. ( w i^i ( B i^i dom F ) ) -> x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) ) |
73 |
48 72
|
ralrimi |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> A. x e. ( w i^i ( B i^i dom F ) ) x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
74 |
73 70
|
sylibr |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
75 |
45 74
|
eqssd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
76 |
35 75
|
eqtrd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
77 |
76
|
adantl |
|- ( ( ( ph /\ a e. RR ) /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
78 |
77
|
3adant2 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
79 |
22
|
3ad2ant1 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> S e. SAlg ) |
80 |
|
simp1l |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ph ) |
81 |
26 9
|
ssexd |
|- ( ph -> ( B i^i dom F ) e. _V ) |
82 |
80 81
|
syl |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ( B i^i dom F ) e. _V ) |
83 |
|
simp2 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> w e. S ) |
84 |
|
eqid |
|- ( w i^i ( B i^i dom F ) ) = ( w i^i ( B i^i dom F ) ) |
85 |
79 82 83 84
|
elrestd |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ( w i^i ( B i^i dom F ) ) e. ( S |`t ( B i^i dom F ) ) ) |
86 |
78 85
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) |
87 |
86
|
3exp |
|- ( ( ph /\ a e. RR ) -> ( w e. S -> ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) ) ) |
88 |
87
|
rexlimdv |
|- ( ( ph /\ a e. RR ) -> ( E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) ) |
89 |
30 88
|
mpd |
|- ( ( ph /\ a e. RR ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) |
90 |
3 1 7 21 89
|
issmfd |
|- ( ph -> ( F |` B ) e. ( SMblFn ` S ) ) |