| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sssmf.s |
|- ( ph -> S e. SAlg ) |
| 2 |
|
sssmf.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 3 |
|
nfv |
|- F/ a ph |
| 4 |
|
inss2 |
|- ( B i^i dom F ) C_ dom F |
| 5 |
|
eqid |
|- dom F = dom F |
| 6 |
1 2 5
|
smfdmss |
|- ( ph -> dom F C_ U. S ) |
| 7 |
4 6
|
sstrid |
|- ( ph -> ( B i^i dom F ) C_ U. S ) |
| 8 |
1 2 5
|
smff |
|- ( ph -> F : dom F --> RR ) |
| 9 |
4
|
a1i |
|- ( ph -> ( B i^i dom F ) C_ dom F ) |
| 10 |
|
fssres |
|- ( ( F : dom F --> RR /\ ( B i^i dom F ) C_ dom F ) -> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ph -> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) |
| 12 |
8
|
freld |
|- ( ph -> Rel F ) |
| 13 |
|
resindm |
|- ( Rel F -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( F |` ( B i^i dom F ) ) = ( F |` B ) ) |
| 15 |
14
|
eqcomd |
|- ( ph -> ( F |` B ) = ( F |` ( B i^i dom F ) ) ) |
| 16 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
| 17 |
16
|
a1i |
|- ( ph -> dom ( F |` B ) = ( B i^i dom F ) ) |
| 18 |
15 17
|
feq12d |
|- ( ph -> ( ( F |` B ) : dom ( F |` B ) --> RR <-> ( F |` ( B i^i dom F ) ) : ( B i^i dom F ) --> RR ) ) |
| 19 |
11 18
|
mpbird |
|- ( ph -> ( F |` B ) : dom ( F |` B ) --> RR ) |
| 20 |
17
|
feq2d |
|- ( ph -> ( ( F |` B ) : dom ( F |` B ) --> RR <-> ( F |` B ) : ( B i^i dom F ) --> RR ) ) |
| 21 |
19 20
|
mpbid |
|- ( ph -> ( F |` B ) : ( B i^i dom F ) --> RR ) |
| 22 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
| 23 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` S ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 25 |
22 23 5 24
|
smfpreimalt |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
| 26 |
2
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 27 |
|
elrest |
|- ( ( S e. SAlg /\ dom F e. _V ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
| 28 |
1 26 27
|
syl2anc |
|- ( ph -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) <-> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) ) |
| 30 |
25 29
|
mpbid |
|- ( ( ph /\ a e. RR ) -> E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) |
| 31 |
|
elinel1 |
|- ( x e. ( B i^i dom F ) -> x e. B ) |
| 32 |
31
|
fvresd |
|- ( x e. ( B i^i dom F ) -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 33 |
32
|
breq1d |
|- ( x e. ( B i^i dom F ) -> ( ( ( F |` B ) ` x ) < a <-> ( F ` x ) < a ) ) |
| 34 |
33
|
rabbiia |
|- { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = { x e. ( B i^i dom F ) | ( F ` x ) < a } |
| 35 |
34
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 36 |
|
rabss2 |
|- ( ( B i^i dom F ) C_ dom F -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ { x e. dom F | ( F ` x ) < a } ) |
| 37 |
4 36
|
ax-mp |
|- { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ { x e. dom F | ( F ` x ) < a } |
| 38 |
|
id |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) |
| 39 |
|
inss1 |
|- ( w i^i dom F ) C_ w |
| 40 |
39
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i dom F ) C_ w ) |
| 41 |
38 40
|
eqsstrd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. dom F | ( F ` x ) < a } C_ w ) |
| 42 |
37 41
|
sstrid |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ w ) |
| 43 |
|
ssrab2 |
|- { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( B i^i dom F ) |
| 44 |
43
|
a1i |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( B i^i dom F ) ) |
| 45 |
42 44
|
ssind |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } C_ ( w i^i ( B i^i dom F ) ) ) |
| 46 |
|
nfrab1 |
|- F/_ x { x e. dom F | ( F ` x ) < a } |
| 47 |
|
nfcv |
|- F/_ x ( w i^i dom F ) |
| 48 |
46 47
|
nfeq |
|- F/ x { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) |
| 49 |
|
elinel2 |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. ( B i^i dom F ) ) |
| 50 |
49
|
adantl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. ( B i^i dom F ) ) |
| 51 |
|
elinel1 |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. w ) |
| 52 |
4
|
sseli |
|- ( x e. ( B i^i dom F ) -> x e. dom F ) |
| 53 |
49 52
|
syl |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. dom F ) |
| 54 |
51 53
|
elind |
|- ( x e. ( w i^i ( B i^i dom F ) ) -> x e. ( w i^i dom F ) ) |
| 55 |
54
|
adantl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. ( w i^i dom F ) ) |
| 56 |
38
|
eqcomd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i dom F ) = { x e. dom F | ( F ` x ) < a } ) |
| 57 |
56
|
adantr |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( w i^i dom F ) = { x e. dom F | ( F ` x ) < a } ) |
| 58 |
55 57
|
eleqtrd |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. { x e. dom F | ( F ` x ) < a } ) |
| 59 |
|
rabid |
|- ( x e. { x e. dom F | ( F ` x ) < a } <-> ( x e. dom F /\ ( F ` x ) < a ) ) |
| 60 |
59
|
biimpi |
|- ( x e. { x e. dom F | ( F ` x ) < a } -> ( x e. dom F /\ ( F ` x ) < a ) ) |
| 61 |
60
|
simprd |
|- ( x e. { x e. dom F | ( F ` x ) < a } -> ( F ` x ) < a ) |
| 62 |
58 61
|
syl |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( F ` x ) < a ) |
| 63 |
50 62
|
jca |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> ( x e. ( B i^i dom F ) /\ ( F ` x ) < a ) ) |
| 64 |
|
rabid |
|- ( x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } <-> ( x e. ( B i^i dom F ) /\ ( F ` x ) < a ) ) |
| 65 |
63 64
|
sylibr |
|- ( ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) /\ x e. ( w i^i ( B i^i dom F ) ) ) -> x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 66 |
65
|
ex |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( x e. ( w i^i ( B i^i dom F ) ) -> x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) ) |
| 67 |
48 66
|
ralrimi |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> A. x e. ( w i^i ( B i^i dom F ) ) x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 68 |
|
nfcv |
|- F/_ x ( w i^i ( B i^i dom F ) ) |
| 69 |
|
nfrab1 |
|- F/_ x { x e. ( B i^i dom F ) | ( F ` x ) < a } |
| 70 |
68 69
|
dfss3f |
|- ( ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } <-> A. x e. ( w i^i ( B i^i dom F ) ) x e. { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 71 |
67 70
|
sylibr |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 72 |
38 38 38 71
|
4syl |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> ( w i^i ( B i^i dom F ) ) C_ { x e. ( B i^i dom F ) | ( F ` x ) < a } ) |
| 73 |
45 72
|
eqssd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( F ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
| 74 |
35 73
|
eqtrd |
|- ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
| 75 |
74
|
adantl |
|- ( ( ( ph /\ a e. RR ) /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
| 76 |
75
|
3adant2 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } = ( w i^i ( B i^i dom F ) ) ) |
| 77 |
22
|
3ad2ant1 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> S e. SAlg ) |
| 78 |
|
simp1l |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ph ) |
| 79 |
26 9
|
ssexd |
|- ( ph -> ( B i^i dom F ) e. _V ) |
| 80 |
78 79
|
syl |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ( B i^i dom F ) e. _V ) |
| 81 |
|
simp2 |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> w e. S ) |
| 82 |
|
eqid |
|- ( w i^i ( B i^i dom F ) ) = ( w i^i ( B i^i dom F ) ) |
| 83 |
77 80 81 82
|
elrestd |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> ( w i^i ( B i^i dom F ) ) e. ( S |`t ( B i^i dom F ) ) ) |
| 84 |
76 83
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ w e. S /\ { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) |
| 85 |
84
|
3exp |
|- ( ( ph /\ a e. RR ) -> ( w e. S -> ( { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) ) ) |
| 86 |
85
|
rexlimdv |
|- ( ( ph /\ a e. RR ) -> ( E. w e. S { x e. dom F | ( F ` x ) < a } = ( w i^i dom F ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) ) |
| 87 |
30 86
|
mpd |
|- ( ( ph /\ a e. RR ) -> { x e. ( B i^i dom F ) | ( ( F |` B ) ` x ) < a } e. ( S |`t ( B i^i dom F ) ) ) |
| 88 |
3 1 7 21 87
|
issmfd |
|- ( ph -> ( F |` B ) e. ( SMblFn ` S ) ) |