| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfresmf.1 |  |-  ( ph -> F e. MblFn ) | 
						
							| 2 |  | mbfresmf.2 |  |-  ( ph -> ran F C_ RR ) | 
						
							| 3 |  | mbfresmf.3 |  |-  S = dom vol | 
						
							| 4 |  | nfv |  |-  F/ a ph | 
						
							| 5 | 3 | a1i |  |-  ( ph -> S = dom vol ) | 
						
							| 6 |  | dmvolsal |  |-  dom vol e. SAlg | 
						
							| 7 | 6 | a1i |  |-  ( ph -> dom vol e. SAlg ) | 
						
							| 8 | 5 7 | eqeltrd |  |-  ( ph -> S e. SAlg ) | 
						
							| 9 |  | mbfdmssre |  |-  ( F e. MblFn -> dom F C_ RR ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> dom F C_ RR ) | 
						
							| 11 | 3 | unieqi |  |-  U. S = U. dom vol | 
						
							| 12 |  | unidmvol |  |-  U. dom vol = RR | 
						
							| 13 | 11 12 | eqtri |  |-  U. S = RR | 
						
							| 14 | 10 13 | sseqtrrdi |  |-  ( ph -> dom F C_ U. S ) | 
						
							| 15 |  | mbff |  |-  ( F e. MblFn -> F : dom F --> CC ) | 
						
							| 16 |  | ffn |  |-  ( F : dom F --> CC -> F Fn dom F ) | 
						
							| 17 | 1 15 16 | 3syl |  |-  ( ph -> F Fn dom F ) | 
						
							| 18 | 17 2 | jca |  |-  ( ph -> ( F Fn dom F /\ ran F C_ RR ) ) | 
						
							| 19 |  | df-f |  |-  ( F : dom F --> RR <-> ( F Fn dom F /\ ran F C_ RR ) ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ a e. RR ) -> F : dom F --> RR ) | 
						
							| 22 |  | rexr |  |-  ( a e. RR -> a e. RR* ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. RR* ) | 
						
							| 24 | 21 23 | preimaioomnf |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) = { x e. dom F | ( F ` x ) < a } ) | 
						
							| 25 | 24 | eqcomd |  |-  ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } = ( `' F " ( -oo (,) a ) ) ) | 
						
							| 26 | 6 | elexi |  |-  dom vol e. _V | 
						
							| 27 | 3 26 | eqeltri |  |-  S e. _V | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ a e. RR ) -> S e. _V ) | 
						
							| 29 | 1 | dmexd |  |-  ( ph -> dom F e. _V ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ a e. RR ) -> dom F e. _V ) | 
						
							| 31 |  | mbfima |  |-  ( ( F e. MblFn /\ F : dom F --> RR ) -> ( `' F " ( -oo (,) a ) ) e. dom vol ) | 
						
							| 32 | 1 20 31 | syl2anc |  |-  ( ph -> ( `' F " ( -oo (,) a ) ) e. dom vol ) | 
						
							| 33 | 32 5 | eleqtrrd |  |-  ( ph -> ( `' F " ( -oo (,) a ) ) e. S ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. S ) | 
						
							| 35 |  | cnvimass |  |-  ( `' F " ( -oo (,) a ) ) C_ dom F | 
						
							| 36 |  | dfss |  |-  ( ( `' F " ( -oo (,) a ) ) C_ dom F <-> ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) ) | 
						
							| 37 | 36 | biimpi |  |-  ( ( `' F " ( -oo (,) a ) ) C_ dom F -> ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) ) | 
						
							| 38 | 35 37 | ax-mp |  |-  ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) | 
						
							| 39 | 28 30 34 38 | elrestd |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. ( S |`t dom F ) ) | 
						
							| 40 | 25 39 | eqeltrd |  |-  ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) | 
						
							| 41 | 4 8 14 20 40 | issmfd |  |-  ( ph -> F e. ( SMblFn ` S ) ) |