| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfresmf.1 |
|- ( ph -> F e. MblFn ) |
| 2 |
|
mbfresmf.2 |
|- ( ph -> ran F C_ RR ) |
| 3 |
|
mbfresmf.3 |
|- S = dom vol |
| 4 |
|
nfv |
|- F/ a ph |
| 5 |
3
|
a1i |
|- ( ph -> S = dom vol ) |
| 6 |
|
dmvolsal |
|- dom vol e. SAlg |
| 7 |
6
|
a1i |
|- ( ph -> dom vol e. SAlg ) |
| 8 |
5 7
|
eqeltrd |
|- ( ph -> S e. SAlg ) |
| 9 |
|
mbfdmssre |
|- ( F e. MblFn -> dom F C_ RR ) |
| 10 |
1 9
|
syl |
|- ( ph -> dom F C_ RR ) |
| 11 |
3
|
unieqi |
|- U. S = U. dom vol |
| 12 |
|
unidmvol |
|- U. dom vol = RR |
| 13 |
11 12
|
eqtri |
|- U. S = RR |
| 14 |
10 13
|
sseqtrrdi |
|- ( ph -> dom F C_ U. S ) |
| 15 |
|
mbff |
|- ( F e. MblFn -> F : dom F --> CC ) |
| 16 |
|
ffn |
|- ( F : dom F --> CC -> F Fn dom F ) |
| 17 |
1 15 16
|
3syl |
|- ( ph -> F Fn dom F ) |
| 18 |
17 2
|
jca |
|- ( ph -> ( F Fn dom F /\ ran F C_ RR ) ) |
| 19 |
|
df-f |
|- ( F : dom F --> RR <-> ( F Fn dom F /\ ran F C_ RR ) ) |
| 20 |
18 19
|
sylibr |
|- ( ph -> F : dom F --> RR ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ a e. RR ) -> F : dom F --> RR ) |
| 22 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
| 24 |
21 23
|
preimaioomnf |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) = { x e. dom F | ( F ` x ) < a } ) |
| 25 |
24
|
eqcomd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } = ( `' F " ( -oo (,) a ) ) ) |
| 26 |
6
|
elexi |
|- dom vol e. _V |
| 27 |
3 26
|
eqeltri |
|- S e. _V |
| 28 |
27
|
a1i |
|- ( ( ph /\ a e. RR ) -> S e. _V ) |
| 29 |
1
|
dmexd |
|- ( ph -> dom F e. _V ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ a e. RR ) -> dom F e. _V ) |
| 31 |
|
mbfima |
|- ( ( F e. MblFn /\ F : dom F --> RR ) -> ( `' F " ( -oo (,) a ) ) e. dom vol ) |
| 32 |
1 20 31
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) a ) ) e. dom vol ) |
| 33 |
32 5
|
eleqtrrd |
|- ( ph -> ( `' F " ( -oo (,) a ) ) e. S ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. S ) |
| 35 |
|
cnvimass |
|- ( `' F " ( -oo (,) a ) ) C_ dom F |
| 36 |
|
dfss |
|- ( ( `' F " ( -oo (,) a ) ) C_ dom F <-> ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) ) |
| 37 |
36
|
biimpi |
|- ( ( `' F " ( -oo (,) a ) ) C_ dom F -> ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) ) |
| 38 |
35 37
|
ax-mp |
|- ( `' F " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i dom F ) |
| 39 |
28 30 34 38
|
elrestd |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. ( S |`t dom F ) ) |
| 40 |
25 39
|
eqeltrd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
| 41 |
4 8 14 20 40
|
issmfd |
|- ( ph -> F e. ( SMblFn ` S ) ) |