Metamath Proof Explorer


Theorem mbfresmf

Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses mbfresmf.1 φ F MblFn
mbfresmf.2 φ ran F
mbfresmf.3 S = dom vol
Assertion mbfresmf φ F SMblFn S

Proof

Step Hyp Ref Expression
1 mbfresmf.1 φ F MblFn
2 mbfresmf.2 φ ran F
3 mbfresmf.3 S = dom vol
4 nfv a φ
5 3 a1i φ S = dom vol
6 dmvolsal dom vol SAlg
7 6 a1i φ dom vol SAlg
8 5 7 eqeltrd φ S SAlg
9 mbfdmssre F MblFn dom F
10 1 9 syl φ dom F
11 3 unieqi S = dom vol
12 unidmvol dom vol =
13 11 12 eqtri S =
14 10 13 sseqtrrdi φ dom F S
15 mbff F MblFn F : dom F
16 ffn F : dom F F Fn dom F
17 1 15 16 3syl φ F Fn dom F
18 17 2 jca φ F Fn dom F ran F
19 df-f F : dom F F Fn dom F ran F
20 18 19 sylibr φ F : dom F
21 20 adantr φ a F : dom F
22 rexr a a *
23 22 adantl φ a a *
24 21 23 preimaioomnf φ a F -1 −∞ a = x dom F | F x < a
25 24 eqcomd φ a x dom F | F x < a = F -1 −∞ a
26 6 elexi dom vol V
27 3 26 eqeltri S V
28 27 a1i φ a S V
29 1 dmexd φ dom F V
30 29 adantr φ a dom F V
31 mbfima F MblFn F : dom F F -1 −∞ a dom vol
32 1 20 31 syl2anc φ F -1 −∞ a dom vol
33 32 5 eleqtrrd φ F -1 −∞ a S
34 33 adantr φ a F -1 −∞ a S
35 cnvimass F -1 −∞ a dom F
36 dfss F -1 −∞ a dom F F -1 −∞ a = F -1 −∞ a dom F
37 36 biimpi F -1 −∞ a dom F F -1 −∞ a = F -1 −∞ a dom F
38 35 37 ax-mp F -1 −∞ a = F -1 −∞ a dom F
39 28 30 34 38 elrestd φ a F -1 −∞ a S 𝑡 dom F
40 25 39 eqeltrd φ a x dom F | F x < a S 𝑡 dom F
41 4 8 14 20 40 issmfd φ F SMblFn S