Step |
Hyp |
Ref |
Expression |
1 |
|
mbfresmf.1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
2 |
|
mbfresmf.2 |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
3 |
|
mbfresmf.3 |
⊢ 𝑆 = dom vol |
4 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
5 |
3
|
a1i |
⊢ ( 𝜑 → 𝑆 = dom vol ) |
6 |
|
dmvolsal |
⊢ dom vol ∈ SAlg |
7 |
6
|
a1i |
⊢ ( 𝜑 → dom vol ∈ SAlg ) |
8 |
5 7
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
9 |
|
mbfdmssre |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ ) |
10 |
1 9
|
syl |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
11 |
3
|
unieqi |
⊢ ∪ 𝑆 = ∪ dom vol |
12 |
|
unidmvol |
⊢ ∪ dom vol = ℝ |
13 |
11 12
|
eqtri |
⊢ ∪ 𝑆 = ℝ |
14 |
10 13
|
sseqtrrdi |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
15 |
|
mbff |
⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) |
16 |
|
ffn |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → 𝐹 Fn dom 𝐹 ) |
17 |
1 15 16
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn dom 𝐹 ) |
18 |
17 2
|
jca |
⊢ ( 𝜑 → ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) ) |
19 |
|
df-f |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℝ ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) ) |
20 |
18 19
|
sylibr |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
22 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
24 |
21 23
|
preimaioomnf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ) |
26 |
6
|
elexi |
⊢ dom vol ∈ V |
27 |
3 26
|
eqeltri |
⊢ 𝑆 ∈ V |
28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ V ) |
29 |
1
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → dom 𝐹 ∈ V ) |
31 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : dom 𝐹 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ dom vol ) |
32 |
1 20 31
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ dom vol ) |
33 |
32 5
|
eleqtrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ 𝑆 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ 𝑆 ) |
35 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹 |
36 |
|
dfss |
⊢ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹 ↔ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 ) ) |
37 |
36
|
biimpi |
⊢ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹 → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 ) ) |
38 |
35 37
|
ax-mp |
⊢ ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 ) |
39 |
28 30 34 38
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
40 |
25 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
41 |
4 8 14 20 40
|
issmfd |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |