| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfresmf.1 | ⊢ ( 𝜑  →  𝐹  ∈  MblFn ) | 
						
							| 2 |  | mbfresmf.2 | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 3 |  | mbfresmf.3 | ⊢ 𝑆  =  dom  vol | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 5 | 3 | a1i | ⊢ ( 𝜑  →  𝑆  =  dom  vol ) | 
						
							| 6 |  | dmvolsal | ⊢ dom  vol  ∈  SAlg | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  dom  vol  ∈  SAlg ) | 
						
							| 8 | 5 7 | eqeltrd | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 9 |  | mbfdmssre | ⊢ ( 𝐹  ∈  MblFn  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 11 | 3 | unieqi | ⊢ ∪  𝑆  =  ∪  dom  vol | 
						
							| 12 |  | unidmvol | ⊢ ∪  dom  vol  =  ℝ | 
						
							| 13 | 11 12 | eqtri | ⊢ ∪  𝑆  =  ℝ | 
						
							| 14 | 10 13 | sseqtrrdi | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 15 |  | mbff | ⊢ ( 𝐹  ∈  MblFn  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 16 |  | ffn | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℂ  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 17 | 1 15 16 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 18 | 17 2 | jca | ⊢ ( 𝜑  →  ( 𝐹  Fn  dom  𝐹  ∧  ran  𝐹  ⊆  ℝ ) ) | 
						
							| 19 |  | df-f | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℝ  ↔  ( 𝐹  Fn  dom  𝐹  ∧  ran  𝐹  ⊆  ℝ ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 22 |  | rexr | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ* ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 24 | 21 23 | preimaioomnf | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  =  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 26 | 6 | elexi | ⊢ dom  vol  ∈  V | 
						
							| 27 | 3 26 | eqeltri | ⊢ 𝑆  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  V ) | 
						
							| 29 | 1 | dmexd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  dom  𝐹  ∈  V ) | 
						
							| 31 |  | mbfima | ⊢ ( ( 𝐹  ∈  MblFn  ∧  𝐹 : dom  𝐹 ⟶ ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  dom  vol ) | 
						
							| 32 | 1 20 31 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  dom  vol ) | 
						
							| 33 | 32 5 | eleqtrrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  𝑆 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  𝑆 ) | 
						
							| 35 |  | cnvimass | ⊢ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ⊆  dom  𝐹 | 
						
							| 36 |  | dfss | ⊢ ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ⊆  dom  𝐹  ↔  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  dom  𝐹 ) ) | 
						
							| 37 | 36 | biimpi | ⊢ ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ⊆  dom  𝐹  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  dom  𝐹 ) ) | 
						
							| 38 | 35 37 | ax-mp | ⊢ ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  dom  𝐹 ) | 
						
							| 39 | 28 30 34 38 | elrestd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 40 | 25 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 41 | 4 8 14 20 40 | issmfd | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) |