Metamath Proof Explorer


Theorem mbfresmf

Description: A real-valued measurable function is a sigma-measurable function (w.r.t. the Lebesgue measure on the Reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses mbfresmf.1 ( 𝜑𝐹 ∈ MblFn )
mbfresmf.2 ( 𝜑 → ran 𝐹 ⊆ ℝ )
mbfresmf.3 𝑆 = dom vol
Assertion mbfresmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 mbfresmf.1 ( 𝜑𝐹 ∈ MblFn )
2 mbfresmf.2 ( 𝜑 → ran 𝐹 ⊆ ℝ )
3 mbfresmf.3 𝑆 = dom vol
4 nfv 𝑎 𝜑
5 3 a1i ( 𝜑𝑆 = dom vol )
6 dmvolsal dom vol ∈ SAlg
7 6 a1i ( 𝜑 → dom vol ∈ SAlg )
8 5 7 eqeltrd ( 𝜑𝑆 ∈ SAlg )
9 mbfdmssre ( 𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ )
10 1 9 syl ( 𝜑 → dom 𝐹 ⊆ ℝ )
11 3 unieqi 𝑆 = dom vol
12 unidmvol dom vol = ℝ
13 11 12 eqtri 𝑆 = ℝ
14 10 13 sseqtrrdi ( 𝜑 → dom 𝐹 𝑆 )
15 mbff ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ )
16 ffn ( 𝐹 : dom 𝐹 ⟶ ℂ → 𝐹 Fn dom 𝐹 )
17 1 15 16 3syl ( 𝜑𝐹 Fn dom 𝐹 )
18 17 2 jca ( 𝜑 → ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) )
19 df-f ( 𝐹 : dom 𝐹 ⟶ ℝ ↔ ( 𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ ℝ ) )
20 18 19 sylibr ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
21 20 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 : dom 𝐹 ⟶ ℝ )
22 rexr ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* )
23 22 adantl ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* )
24 21 23 preimaioomnf ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) = { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } )
25 24 eqcomd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } = ( 𝐹 “ ( -∞ (,) 𝑎 ) ) )
26 6 elexi dom vol ∈ V
27 3 26 eqeltri 𝑆 ∈ V
28 27 a1i ( ( 𝜑𝑎 ∈ ℝ ) → 𝑆 ∈ V )
29 1 dmexd ( 𝜑 → dom 𝐹 ∈ V )
30 29 adantr ( ( 𝜑𝑎 ∈ ℝ ) → dom 𝐹 ∈ V )
31 mbfima ( ( 𝐹 ∈ MblFn ∧ 𝐹 : dom 𝐹 ⟶ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ dom vol )
32 1 20 31 syl2anc ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ dom vol )
33 32 5 eleqtrrd ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ 𝑆 )
34 33 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ 𝑆 )
35 cnvimass ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹
36 dfss ( ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹 ↔ ( 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 ) )
37 36 biimpi ( ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ⊆ dom 𝐹 → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 ) )
38 35 37 ax-mp ( 𝐹 “ ( -∞ (,) 𝑎 ) ) = ( ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ dom 𝐹 )
39 28 30 34 38 elrestd ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆t dom 𝐹 ) )
40 25 39 eqeltrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) )
41 4 8 14 20 40 issmfd ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )