| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfsmf.1 | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 2 |  | cnfsmf.k | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 3 |  | cnfsmf.f | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐽  ↾t  dom  𝐹 )  Cn  𝐾 ) ) | 
						
							| 4 |  | cnfsmf.s | ⊢ 𝑆  =  ( SalGen ‘ 𝐽 ) | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 6 | 1 4 | salgencld | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 7 |  | eqid | ⊢ ∪  ( 𝐽  ↾t  dom  𝐹 )  =  ∪  ( 𝐽  ↾t  dom  𝐹 ) | 
						
							| 8 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 9 | 7 8 | cnf | ⊢ ( 𝐹  ∈  ( ( 𝐽  ↾t  dom  𝐹 )  Cn  𝐾 )  →  𝐹 : ∪  ( 𝐽  ↾t  dom  𝐹 ) ⟶ ∪  𝐾 ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝐹 : ∪  ( 𝐽  ↾t  dom  𝐹 ) ⟶ ∪  𝐾 ) | 
						
							| 11 | 10 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  ∪  ( 𝐽  ↾t  dom  𝐹 ) ) | 
						
							| 12 |  | ovex | ⊢ ( 𝐽  ↾t  dom  𝐹 )  ∈  V | 
						
							| 13 | 12 | uniex | ⊢ ∪  ( 𝐽  ↾t  dom  𝐹 )  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∈  V ) | 
						
							| 15 | 11 14 | eqeltrd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 16 | 1 15 | unirestss | ⊢ ( 𝜑  →  ∪  ( 𝐽  ↾t  dom  𝐹 )  ⊆  ∪  𝐽 ) | 
						
							| 17 | 4 | sssalgen | ⊢ ( 𝐽  ∈  Top  →  𝐽  ⊆  𝑆 ) | 
						
							| 18 | 1 17 | syl | ⊢ ( 𝜑  →  𝐽  ⊆  𝑆 ) | 
						
							| 19 | 18 | unissd | ⊢ ( 𝜑  →  ∪  𝐽  ⊆  ∪  𝑆 ) | 
						
							| 20 | 16 19 | sstrd | ⊢ ( 𝜑  →  ∪  ( 𝐽  ↾t  dom  𝐹 )  ⊆  ∪  𝑆 ) | 
						
							| 21 | 11 20 | eqsstrd | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 22 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 23 | 2 | unieqi | ⊢ ∪  𝐾  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 24 | 22 23 | eqtr4i | ⊢ ℝ  =  ∪  𝐾 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ℝ  =  ∪  𝐾 ) | 
						
							| 26 | 25 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : ∪  ( 𝐽  ↾t  dom  𝐹 ) ⟶ ℝ  ↔  𝐹 : ∪  ( 𝐽  ↾t  dom  𝐹 ) ⟶ ∪  𝐾 ) ) | 
						
							| 27 | 10 26 | mpbird | ⊢ ( 𝜑  →  𝐹 : ∪  ( 𝐽  ↾t  dom  𝐹 ) ⟶ ℝ ) | 
						
							| 28 | 27 | ffdmd | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 29 |  | ssrest | ⊢ ( ( 𝑆  ∈  SAlg  ∧  𝐽  ⊆  𝑆 )  →  ( 𝐽  ↾t  dom  𝐹 )  ⊆  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 30 | 6 18 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  dom  𝐹 )  ⊆  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝐽  ↾t  dom  𝐹 )  ⊆  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 32 | 11 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 35 |  | nfcv | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 36 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 37 |  | eqid | ⊢ { 𝑥  ∈  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  =  { 𝑥  ∈  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 } | 
						
							| 38 |  | rexr | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ* ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 40 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹  ∈  ( ( 𝐽  ↾t  dom  𝐹 )  Cn  𝐾 ) ) | 
						
							| 41 | 34 35 36 2 7 37 39 40 | rfcnpre2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ∪  ( 𝐽  ↾t  dom  𝐹 )  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝐽  ↾t  dom  𝐹 ) ) | 
						
							| 42 | 33 41 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝐽  ↾t  dom  𝐹 ) ) | 
						
							| 43 | 31 42 | sseldd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  ( 𝐹 ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 44 | 5 6 21 28 43 | issmfd | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) |