Metamath Proof Explorer


Theorem cnfsmf

Description: A continuous function is measurable. Proposition 121D (b) of Fremlin1 p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses cnfsmf.1 ( 𝜑𝐽 ∈ Top )
cnfsmf.k 𝐾 = ( topGen ‘ ran (,) )
cnfsmf.f ( 𝜑𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) )
cnfsmf.s 𝑆 = ( SalGen ‘ 𝐽 )
Assertion cnfsmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 cnfsmf.1 ( 𝜑𝐽 ∈ Top )
2 cnfsmf.k 𝐾 = ( topGen ‘ ran (,) )
3 cnfsmf.f ( 𝜑𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) )
4 cnfsmf.s 𝑆 = ( SalGen ‘ 𝐽 )
5 nfv 𝑎 𝜑
6 1 4 salgencld ( 𝜑𝑆 ∈ SAlg )
7 eqid ( 𝐽t dom 𝐹 ) = ( 𝐽t dom 𝐹 )
8 eqid 𝐾 = 𝐾
9 7 8 cnf ( 𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) → 𝐹 : ( 𝐽t dom 𝐹 ) ⟶ 𝐾 )
10 3 9 syl ( 𝜑𝐹 : ( 𝐽t dom 𝐹 ) ⟶ 𝐾 )
11 10 fdmd ( 𝜑 → dom 𝐹 = ( 𝐽t dom 𝐹 ) )
12 ovex ( 𝐽t dom 𝐹 ) ∈ V
13 12 uniex ( 𝐽t dom 𝐹 ) ∈ V
14 13 a1i ( 𝜑 ( 𝐽t dom 𝐹 ) ∈ V )
15 11 14 eqeltrd ( 𝜑 → dom 𝐹 ∈ V )
16 1 15 unirestss ( 𝜑 ( 𝐽t dom 𝐹 ) ⊆ 𝐽 )
17 4 sssalgen ( 𝐽 ∈ Top → 𝐽𝑆 )
18 1 17 syl ( 𝜑𝐽𝑆 )
19 18 unissd ( 𝜑 𝐽 𝑆 )
20 16 19 sstrd ( 𝜑 ( 𝐽t dom 𝐹 ) ⊆ 𝑆 )
21 11 20 eqsstrd ( 𝜑 → dom 𝐹 𝑆 )
22 uniretop ℝ = ( topGen ‘ ran (,) )
23 2 unieqi 𝐾 = ( topGen ‘ ran (,) )
24 22 23 eqtr4i ℝ = 𝐾
25 24 a1i ( 𝜑 → ℝ = 𝐾 )
26 25 feq3d ( 𝜑 → ( 𝐹 : ( 𝐽t dom 𝐹 ) ⟶ ℝ ↔ 𝐹 : ( 𝐽t dom 𝐹 ) ⟶ 𝐾 ) )
27 10 26 mpbird ( 𝜑𝐹 : ( 𝐽t dom 𝐹 ) ⟶ ℝ )
28 27 ffdmd ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
29 ssrest ( ( 𝑆 ∈ SAlg ∧ 𝐽𝑆 ) → ( 𝐽t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
30 6 18 29 syl2anc ( 𝜑 → ( 𝐽t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
31 30 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝐽t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
32 11 rabeqdv ( 𝜑 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥 ( 𝐽t dom 𝐹 ) ∣ ( 𝐹𝑥 ) < 𝑎 } )
33 32 adantr ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥 ( 𝐽t dom 𝐹 ) ∣ ( 𝐹𝑥 ) < 𝑎 } )
34 nfcv 𝑥 𝑎
35 nfcv 𝑥 𝐹
36 nfv 𝑥 ( 𝜑𝑎 ∈ ℝ )
37 eqid { 𝑥 ( 𝐽t dom 𝐹 ) ∣ ( 𝐹𝑥 ) < 𝑎 } = { 𝑥 ( 𝐽t dom 𝐹 ) ∣ ( 𝐹𝑥 ) < 𝑎 }
38 rexr ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* )
39 38 adantl ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* )
40 3 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 ∈ ( ( 𝐽t dom 𝐹 ) Cn 𝐾 ) )
41 34 35 36 2 7 37 39 40 rfcnpre2 ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ( 𝐽t dom 𝐹 ) ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝐽t dom 𝐹 ) )
42 33 41 eqeltrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝐽t dom 𝐹 ) )
43 31 42 sseldd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) )
44 5 6 21 28 43 issmfd ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )