Step |
Hyp |
Ref |
Expression |
1 |
|
cnfsmf.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
2 |
|
cnfsmf.k |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
3 |
|
cnfsmf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t dom 𝐹 ) Cn 𝐾 ) ) |
4 |
|
cnfsmf.s |
⊢ 𝑆 = ( SalGen ‘ 𝐽 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
6 |
1 4
|
salgencld |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
7 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t dom 𝐹 ) = ∪ ( 𝐽 ↾t dom 𝐹 ) |
8 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
9 |
7 8
|
cnf |
⊢ ( 𝐹 ∈ ( ( 𝐽 ↾t dom 𝐹 ) Cn 𝐾 ) → 𝐹 : ∪ ( 𝐽 ↾t dom 𝐹 ) ⟶ ∪ 𝐾 ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t dom 𝐹 ) ⟶ ∪ 𝐾 ) |
11 |
10
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ∪ ( 𝐽 ↾t dom 𝐹 ) ) |
12 |
|
ovex |
⊢ ( 𝐽 ↾t dom 𝐹 ) ∈ V |
13 |
12
|
uniex |
⊢ ∪ ( 𝐽 ↾t dom 𝐹 ) ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → ∪ ( 𝐽 ↾t dom 𝐹 ) ∈ V ) |
15 |
11 14
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
16 |
1 15
|
unirestss |
⊢ ( 𝜑 → ∪ ( 𝐽 ↾t dom 𝐹 ) ⊆ ∪ 𝐽 ) |
17 |
4
|
sssalgen |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ 𝑆 ) |
18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ 𝑆 ) |
19 |
18
|
unissd |
⊢ ( 𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆 ) |
20 |
16 19
|
sstrd |
⊢ ( 𝜑 → ∪ ( 𝐽 ↾t dom 𝐹 ) ⊆ ∪ 𝑆 ) |
21 |
11 20
|
eqsstrd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
22 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
23 |
2
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
24 |
22 23
|
eqtr4i |
⊢ ℝ = ∪ 𝐾 |
25 |
24
|
a1i |
⊢ ( 𝜑 → ℝ = ∪ 𝐾 ) |
26 |
25
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : ∪ ( 𝐽 ↾t dom 𝐹 ) ⟶ ℝ ↔ 𝐹 : ∪ ( 𝐽 ↾t dom 𝐹 ) ⟶ ∪ 𝐾 ) ) |
27 |
10 26
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t dom 𝐹 ) ⟶ ℝ ) |
28 |
27
|
ffdmd |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
29 |
|
ssrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆 ) → ( 𝐽 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
30 |
6 18 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝐽 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
32 |
11
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ∪ ( 𝐽 ↾t dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ∪ ( 𝐽 ↾t dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
35 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
36 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
37 |
|
eqid |
⊢ { 𝑥 ∈ ∪ ( 𝐽 ↾t dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ ∪ ( 𝐽 ↾t dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } |
38 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
40 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 ∈ ( ( 𝐽 ↾t dom 𝐹 ) Cn 𝐾 ) ) |
41 |
34 35 36 2 7 37 39 40
|
rfcnpre2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝐽 ↾t dom 𝐹 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐽 ↾t dom 𝐹 ) ) |
42 |
33 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐽 ↾t dom 𝐹 ) ) |
43 |
31 42
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
44 |
5 6 21 28 43
|
issmfd |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |