Step |
Hyp |
Ref |
Expression |
1 |
|
cnfsmf.1 |
|- ( ph -> J e. Top ) |
2 |
|
cnfsmf.k |
|- K = ( topGen ` ran (,) ) |
3 |
|
cnfsmf.f |
|- ( ph -> F e. ( ( J |`t dom F ) Cn K ) ) |
4 |
|
cnfsmf.s |
|- S = ( SalGen ` J ) |
5 |
|
nfv |
|- F/ a ph |
6 |
1 4
|
salgencld |
|- ( ph -> S e. SAlg ) |
7 |
|
eqid |
|- U. ( J |`t dom F ) = U. ( J |`t dom F ) |
8 |
|
eqid |
|- U. K = U. K |
9 |
7 8
|
cnf |
|- ( F e. ( ( J |`t dom F ) Cn K ) -> F : U. ( J |`t dom F ) --> U. K ) |
10 |
3 9
|
syl |
|- ( ph -> F : U. ( J |`t dom F ) --> U. K ) |
11 |
10
|
fdmd |
|- ( ph -> dom F = U. ( J |`t dom F ) ) |
12 |
|
ovex |
|- ( J |`t dom F ) e. _V |
13 |
12
|
uniex |
|- U. ( J |`t dom F ) e. _V |
14 |
13
|
a1i |
|- ( ph -> U. ( J |`t dom F ) e. _V ) |
15 |
11 14
|
eqeltrd |
|- ( ph -> dom F e. _V ) |
16 |
1 15
|
unirestss |
|- ( ph -> U. ( J |`t dom F ) C_ U. J ) |
17 |
4
|
sssalgen |
|- ( J e. Top -> J C_ S ) |
18 |
1 17
|
syl |
|- ( ph -> J C_ S ) |
19 |
18
|
unissd |
|- ( ph -> U. J C_ U. S ) |
20 |
16 19
|
sstrd |
|- ( ph -> U. ( J |`t dom F ) C_ U. S ) |
21 |
11 20
|
eqsstrd |
|- ( ph -> dom F C_ U. S ) |
22 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
23 |
2
|
unieqi |
|- U. K = U. ( topGen ` ran (,) ) |
24 |
22 23
|
eqtr4i |
|- RR = U. K |
25 |
24
|
a1i |
|- ( ph -> RR = U. K ) |
26 |
25
|
feq3d |
|- ( ph -> ( F : U. ( J |`t dom F ) --> RR <-> F : U. ( J |`t dom F ) --> U. K ) ) |
27 |
10 26
|
mpbird |
|- ( ph -> F : U. ( J |`t dom F ) --> RR ) |
28 |
27
|
ffdmd |
|- ( ph -> F : dom F --> RR ) |
29 |
|
ssrest |
|- ( ( S e. SAlg /\ J C_ S ) -> ( J |`t dom F ) C_ ( S |`t dom F ) ) |
30 |
6 18 29
|
syl2anc |
|- ( ph -> ( J |`t dom F ) C_ ( S |`t dom F ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( J |`t dom F ) C_ ( S |`t dom F ) ) |
32 |
11
|
rabeqdv |
|- ( ph -> { x e. dom F | ( F ` x ) < a } = { x e. U. ( J |`t dom F ) | ( F ` x ) < a } ) |
33 |
32
|
adantr |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } = { x e. U. ( J |`t dom F ) | ( F ` x ) < a } ) |
34 |
|
nfcv |
|- F/_ x a |
35 |
|
nfcv |
|- F/_ x F |
36 |
|
nfv |
|- F/ x ( ph /\ a e. RR ) |
37 |
|
eqid |
|- { x e. U. ( J |`t dom F ) | ( F ` x ) < a } = { x e. U. ( J |`t dom F ) | ( F ` x ) < a } |
38 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
39 |
38
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
40 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( ( J |`t dom F ) Cn K ) ) |
41 |
34 35 36 2 7 37 39 40
|
rfcnpre2 |
|- ( ( ph /\ a e. RR ) -> { x e. U. ( J |`t dom F ) | ( F ` x ) < a } e. ( J |`t dom F ) ) |
42 |
33 41
|
eqeltrd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( J |`t dom F ) ) |
43 |
31 42
|
sseldd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
44 |
5 6 21 28 43
|
issmfd |
|- ( ph -> F e. ( SMblFn ` S ) ) |