| Step |
Hyp |
Ref |
Expression |
| 1 |
|
incsmflem.x |
|- F/ x ph |
| 2 |
|
incsmflem.y |
|- F/ y ph |
| 3 |
|
incsmflem.a |
|- ( ph -> A C_ RR ) |
| 4 |
|
incsmflem.f |
|- ( ph -> F : A --> RR* ) |
| 5 |
|
incsmflem.i |
|- ( ph -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
| 6 |
|
incsmflem.j |
|- J = ( topGen ` ran (,) ) |
| 7 |
|
incsmflem.b |
|- B = ( SalGen ` J ) |
| 8 |
|
incsmflem.r |
|- ( ph -> R e. RR* ) |
| 9 |
|
incsmflem.l |
|- Y = { x e. A | ( F ` x ) < R } |
| 10 |
|
incsmflem.c |
|- C = sup ( Y , RR* , < ) |
| 11 |
|
incsmflem.d |
|- D = ( -oo (,) C ) |
| 12 |
|
incsmflem.e |
|- E = ( -oo (,] C ) |
| 13 |
|
mnfxr |
|- -oo e. RR* |
| 14 |
13
|
a1i |
|- ( ( ph /\ C e. Y ) -> -oo e. RR* ) |
| 15 |
|
ssrab2 |
|- { x e. A | ( F ` x ) < R } C_ A |
| 16 |
9 15
|
eqsstri |
|- Y C_ A |
| 17 |
16
|
a1i |
|- ( ph -> Y C_ A ) |
| 18 |
17 3
|
sstrd |
|- ( ph -> Y C_ RR ) |
| 19 |
18
|
sselda |
|- ( ( ph /\ C e. Y ) -> C e. RR ) |
| 20 |
14 19 6 7
|
iocborel |
|- ( ( ph /\ C e. Y ) -> ( -oo (,] C ) e. B ) |
| 21 |
12 20
|
eqeltrid |
|- ( ( ph /\ C e. Y ) -> E e. B ) |
| 22 |
|
nfcv |
|- F/_ x C |
| 23 |
|
nfrab1 |
|- F/_ x { x e. A | ( F ` x ) < R } |
| 24 |
9 23
|
nfcxfr |
|- F/_ x Y |
| 25 |
22 24
|
nfel |
|- F/ x C e. Y |
| 26 |
1 25
|
nfan |
|- F/ x ( ph /\ C e. Y ) |
| 27 |
|
nfv |
|- F/ y C e. Y |
| 28 |
2 27
|
nfan |
|- F/ y ( ph /\ C e. Y ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ C e. Y ) -> A C_ RR ) |
| 30 |
4
|
adantr |
|- ( ( ph /\ C e. Y ) -> F : A --> RR* ) |
| 31 |
5
|
adantr |
|- ( ( ph /\ C e. Y ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
| 32 |
8
|
adantr |
|- ( ( ph /\ C e. Y ) -> R e. RR* ) |
| 33 |
|
simpr |
|- ( ( ph /\ C e. Y ) -> C e. Y ) |
| 34 |
26 28 29 30 31 32 9 10 33 12
|
pimincfltioc |
|- ( ( ph /\ C e. Y ) -> Y = ( E i^i A ) ) |
| 35 |
|
ineq1 |
|- ( b = E -> ( b i^i A ) = ( E i^i A ) ) |
| 36 |
35
|
rspceeqv |
|- ( ( E e. B /\ Y = ( E i^i A ) ) -> E. b e. B Y = ( b i^i A ) ) |
| 37 |
21 34 36
|
syl2anc |
|- ( ( ph /\ C e. Y ) -> E. b e. B Y = ( b i^i A ) ) |
| 38 |
6 7
|
iooborel |
|- ( -oo (,) C ) e. B |
| 39 |
11 38
|
eqeltri |
|- D e. B |
| 40 |
39
|
a1i |
|- ( ph -> D e. B ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ -. C e. Y ) -> D e. B ) |
| 42 |
25
|
nfn |
|- F/ x -. C e. Y |
| 43 |
1 42
|
nfan |
|- F/ x ( ph /\ -. C e. Y ) |
| 44 |
|
nfv |
|- F/ y -. C e. Y |
| 45 |
2 44
|
nfan |
|- F/ y ( ph /\ -. C e. Y ) |
| 46 |
3
|
adantr |
|- ( ( ph /\ -. C e. Y ) -> A C_ RR ) |
| 47 |
4
|
adantr |
|- ( ( ph /\ -. C e. Y ) -> F : A --> RR* ) |
| 48 |
5
|
adantr |
|- ( ( ph /\ -. C e. Y ) -> A. x e. A A. y e. A ( x <_ y -> ( F ` x ) <_ ( F ` y ) ) ) |
| 49 |
8
|
adantr |
|- ( ( ph /\ -. C e. Y ) -> R e. RR* ) |
| 50 |
|
simpr |
|- ( ( ph /\ -. C e. Y ) -> -. C e. Y ) |
| 51 |
43 45 46 47 48 49 9 10 50 11
|
pimincfltioo |
|- ( ( ph /\ -. C e. Y ) -> Y = ( D i^i A ) ) |
| 52 |
|
ineq1 |
|- ( b = D -> ( b i^i A ) = ( D i^i A ) ) |
| 53 |
52
|
rspceeqv |
|- ( ( D e. B /\ Y = ( D i^i A ) ) -> E. b e. B Y = ( b i^i A ) ) |
| 54 |
41 51 53
|
syl2anc |
|- ( ( ph /\ -. C e. Y ) -> E. b e. B Y = ( b i^i A ) ) |
| 55 |
37 54
|
pm2.61dan |
|- ( ph -> E. b e. B Y = ( b i^i A ) ) |