Metamath Proof Explorer


Theorem incsmflem

Description: A nondecreasing function is Borel measurable. Proposition 121D (c) of Fremlin1 p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses incsmflem.x 𝑥 𝜑
incsmflem.y 𝑦 𝜑
incsmflem.a ( 𝜑𝐴 ⊆ ℝ )
incsmflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
incsmflem.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
incsmflem.j 𝐽 = ( topGen ‘ ran (,) )
incsmflem.b 𝐵 = ( SalGen ‘ 𝐽 )
incsmflem.r ( 𝜑𝑅 ∈ ℝ* )
incsmflem.l 𝑌 = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑅 }
incsmflem.c 𝐶 = sup ( 𝑌 , ℝ* , < )
incsmflem.d 𝐷 = ( -∞ (,) 𝐶 )
incsmflem.e 𝐸 = ( -∞ (,] 𝐶 )
Assertion incsmflem ( 𝜑 → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )

Proof

Step Hyp Ref Expression
1 incsmflem.x 𝑥 𝜑
2 incsmflem.y 𝑦 𝜑
3 incsmflem.a ( 𝜑𝐴 ⊆ ℝ )
4 incsmflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
5 incsmflem.i ( 𝜑 → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
6 incsmflem.j 𝐽 = ( topGen ‘ ran (,) )
7 incsmflem.b 𝐵 = ( SalGen ‘ 𝐽 )
8 incsmflem.r ( 𝜑𝑅 ∈ ℝ* )
9 incsmflem.l 𝑌 = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑅 }
10 incsmflem.c 𝐶 = sup ( 𝑌 , ℝ* , < )
11 incsmflem.d 𝐷 = ( -∞ (,) 𝐶 )
12 incsmflem.e 𝐸 = ( -∞ (,] 𝐶 )
13 mnfxr -∞ ∈ ℝ*
14 13 a1i ( ( 𝜑𝐶𝑌 ) → -∞ ∈ ℝ* )
15 ssrab2 { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑅 } ⊆ 𝐴
16 9 15 eqsstri 𝑌𝐴
17 16 a1i ( 𝜑𝑌𝐴 )
18 17 3 sstrd ( 𝜑𝑌 ⊆ ℝ )
19 18 sselda ( ( 𝜑𝐶𝑌 ) → 𝐶 ∈ ℝ )
20 14 19 6 7 iocborel ( ( 𝜑𝐶𝑌 ) → ( -∞ (,] 𝐶 ) ∈ 𝐵 )
21 12 20 eqeltrid ( ( 𝜑𝐶𝑌 ) → 𝐸𝐵 )
22 nfcv 𝑥 𝐶
23 nfrab1 𝑥 { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑅 }
24 9 23 nfcxfr 𝑥 𝑌
25 22 24 nfel 𝑥 𝐶𝑌
26 1 25 nfan 𝑥 ( 𝜑𝐶𝑌 )
27 nfv 𝑦 𝐶𝑌
28 2 27 nfan 𝑦 ( 𝜑𝐶𝑌 )
29 3 adantr ( ( 𝜑𝐶𝑌 ) → 𝐴 ⊆ ℝ )
30 4 adantr ( ( 𝜑𝐶𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* )
31 5 adantr ( ( 𝜑𝐶𝑌 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
32 8 adantr ( ( 𝜑𝐶𝑌 ) → 𝑅 ∈ ℝ* )
33 simpr ( ( 𝜑𝐶𝑌 ) → 𝐶𝑌 )
34 26 28 29 30 31 32 9 10 33 12 pimincfltioc ( ( 𝜑𝐶𝑌 ) → 𝑌 = ( 𝐸𝐴 ) )
35 ineq1 ( 𝑏 = 𝐸 → ( 𝑏𝐴 ) = ( 𝐸𝐴 ) )
36 35 rspceeqv ( ( 𝐸𝐵𝑌 = ( 𝐸𝐴 ) ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
37 21 34 36 syl2anc ( ( 𝜑𝐶𝑌 ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
38 6 7 iooborel ( -∞ (,) 𝐶 ) ∈ 𝐵
39 11 38 eqeltri 𝐷𝐵
40 39 a1i ( 𝜑𝐷𝐵 )
41 40 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐷𝐵 )
42 25 nfn 𝑥 ¬ 𝐶𝑌
43 1 42 nfan 𝑥 ( 𝜑 ∧ ¬ 𝐶𝑌 )
44 nfv 𝑦 ¬ 𝐶𝑌
45 2 44 nfan 𝑦 ( 𝜑 ∧ ¬ 𝐶𝑌 )
46 3 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐴 ⊆ ℝ )
47 4 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝐹 : 𝐴 ⟶ ℝ* )
48 5 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≤ ( 𝐹𝑦 ) ) )
49 8 adantr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝑅 ∈ ℝ* )
50 simpr ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ¬ 𝐶𝑌 )
51 43 45 46 47 48 49 9 10 50 11 pimincfltioo ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → 𝑌 = ( 𝐷𝐴 ) )
52 ineq1 ( 𝑏 = 𝐷 → ( 𝑏𝐴 ) = ( 𝐷𝐴 ) )
53 52 rspceeqv ( ( 𝐷𝐵𝑌 = ( 𝐷𝐴 ) ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
54 41 51 53 syl2anc ( ( 𝜑 ∧ ¬ 𝐶𝑌 ) → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )
55 37 54 pm2.61dan ( 𝜑 → ∃ 𝑏𝐵 𝑌 = ( 𝑏𝐴 ) )