Step |
Hyp |
Ref |
Expression |
1 |
|
incsmf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
incsmf.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
3 |
|
incsmf.i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
4 |
|
incsmf.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
5 |
|
incsmf.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
7 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
8 |
4 7
|
eqeltri |
⊢ 𝐽 ∈ Top |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
10 |
9 5
|
salgencld |
⊢ ( 𝜑 → 𝐵 ∈ SAlg ) |
11 |
9 5
|
unisalgen2 |
⊢ ( 𝜑 → ∪ 𝐵 = ∪ 𝐽 ) |
12 |
4
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) ) |
14 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
15 |
14
|
eqcomi |
⊢ ∪ ( topGen ‘ ran (,) ) = ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ∪ ( topGen ‘ ran (,) ) = ℝ ) |
17 |
11 13 16
|
3eqtrrd |
⊢ ( 𝜑 → ℝ = ∪ 𝐵 ) |
18 |
1 17
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) |
19 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
20 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
22 |
2
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
24 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
26 |
25
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
27 |
24 26
|
imbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 ≤ 𝑦 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
28 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑧 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
30 |
29
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
31 |
28 30
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑤 ≤ 𝑦 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
32 |
27 31
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
33 |
3 32
|
sylib |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∀ 𝑤 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( 𝐹 ‘ 𝑤 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
35 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
37 |
25
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝐹 ‘ 𝑥 ) < 𝑎 ↔ ( 𝐹 ‘ 𝑤 ) < 𝑎 ) ) |
38 |
37
|
cbvrabv |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = { 𝑤 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑤 ) < 𝑎 } |
39 |
|
eqid |
⊢ sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) = sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) |
40 |
|
eqid |
⊢ ( -∞ (,) sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) ) = ( -∞ (,) sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) ) |
41 |
|
eqid |
⊢ ( -∞ (,] sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) ) = ( -∞ (,] sup ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } , ℝ* , < ) ) |
42 |
19 20 21 23 34 4 5 36 38 39 40 41
|
incsmflem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑏 ∩ 𝐴 ) ) |
43 |
|
reex |
⊢ ℝ ∈ V |
44 |
43
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
45 |
44 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
46 |
|
elrest |
⊢ ( ( 𝐵 ∈ SAlg ∧ 𝐴 ∈ V ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑏 ∩ 𝐴 ) ) ) |
47 |
10 45 46
|
syl2anc |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑏 ∩ 𝐴 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐵 ↾t 𝐴 ) ↔ ∃ 𝑏 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( 𝑏 ∩ 𝐴 ) ) ) |
49 |
42 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝐵 ↾t 𝐴 ) ) |
50 |
6 10 18 2 49
|
issmfd |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝐵 ) ) |