Step |
Hyp |
Ref |
Expression |
1 |
|
smfsssmf.r |
⊢ ( 𝜑 → 𝑅 ∈ SAlg ) |
2 |
|
smfsssmf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfsssmf.i |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑆 ) |
4 |
|
smfsssmf.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑅 ) ) |
5 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
6 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
7 |
1 4 6
|
smfdmss |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑅 ) |
8 |
3
|
unissd |
⊢ ( 𝜑 → ∪ 𝑅 ⊆ ∪ 𝑆 ) |
9 |
7 8
|
sstrd |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
10 |
1 4 6
|
smff |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
11 |
|
ssrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝑅 ⊆ 𝑆 ) → ( 𝑅 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
12 |
2 3 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑅 ↾t dom 𝐹 ) ⊆ ( 𝑆 ↾t dom 𝐹 ) ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑅 ∈ SAlg ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑅 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
17 |
14 15 6 16
|
smfpreimalt |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑅 ↾t dom 𝐹 ) ) |
18 |
13 17
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
19 |
5 2 9 10 18
|
issmfd |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |