Metamath Proof Explorer


Theorem smfsssmf

Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfsssmf.r ( 𝜑𝑅 ∈ SAlg )
smfsssmf.s ( 𝜑𝑆 ∈ SAlg )
smfsssmf.i ( 𝜑𝑅𝑆 )
smfsssmf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑅 ) )
Assertion smfsssmf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfsssmf.r ( 𝜑𝑅 ∈ SAlg )
2 smfsssmf.s ( 𝜑𝑆 ∈ SAlg )
3 smfsssmf.i ( 𝜑𝑅𝑆 )
4 smfsssmf.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑅 ) )
5 nfv 𝑎 𝜑
6 eqid dom 𝐹 = dom 𝐹
7 1 4 6 smfdmss ( 𝜑 → dom 𝐹 𝑅 )
8 3 unissd ( 𝜑 𝑅 𝑆 )
9 7 8 sstrd ( 𝜑 → dom 𝐹 𝑆 )
10 1 4 6 smff ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
11 ssrest ( ( 𝑆 ∈ SAlg ∧ 𝑅𝑆 ) → ( 𝑅t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
12 2 3 11 syl2anc ( 𝜑 → ( 𝑅t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
13 12 adantr ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝑅t dom 𝐹 ) ⊆ ( 𝑆t dom 𝐹 ) )
14 1 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑅 ∈ SAlg )
15 4 adantr ( ( 𝜑𝑎 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑅 ) )
16 simpr ( ( 𝜑𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ )
17 14 15 6 16 smfpreimalt ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑅t dom 𝐹 ) )
18 13 17 sseldd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ∈ dom 𝐹 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t dom 𝐹 ) )
19 5 2 9 10 18 issmfd ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )