Metamath Proof Explorer


Theorem smfsssmf

Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfsssmf.r
|- ( ph -> R e. SAlg )
smfsssmf.s
|- ( ph -> S e. SAlg )
smfsssmf.i
|- ( ph -> R C_ S )
smfsssmf.f
|- ( ph -> F e. ( SMblFn ` R ) )
Assertion smfsssmf
|- ( ph -> F e. ( SMblFn ` S ) )

Proof

Step Hyp Ref Expression
1 smfsssmf.r
 |-  ( ph -> R e. SAlg )
2 smfsssmf.s
 |-  ( ph -> S e. SAlg )
3 smfsssmf.i
 |-  ( ph -> R C_ S )
4 smfsssmf.f
 |-  ( ph -> F e. ( SMblFn ` R ) )
5 nfv
 |-  F/ a ph
6 eqid
 |-  dom F = dom F
7 1 4 6 smfdmss
 |-  ( ph -> dom F C_ U. R )
8 3 unissd
 |-  ( ph -> U. R C_ U. S )
9 7 8 sstrd
 |-  ( ph -> dom F C_ U. S )
10 1 4 6 smff
 |-  ( ph -> F : dom F --> RR )
11 ssrest
 |-  ( ( S e. SAlg /\ R C_ S ) -> ( R |`t dom F ) C_ ( S |`t dom F ) )
12 2 3 11 syl2anc
 |-  ( ph -> ( R |`t dom F ) C_ ( S |`t dom F ) )
13 12 adantr
 |-  ( ( ph /\ a e. RR ) -> ( R |`t dom F ) C_ ( S |`t dom F ) )
14 1 adantr
 |-  ( ( ph /\ a e. RR ) -> R e. SAlg )
15 4 adantr
 |-  ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` R ) )
16 simpr
 |-  ( ( ph /\ a e. RR ) -> a e. RR )
17 14 15 6 16 smfpreimalt
 |-  ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( R |`t dom F ) )
18 13 17 sseldd
 |-  ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) )
19 5 2 9 10 18 issmfd
 |-  ( ph -> F e. ( SMblFn ` S ) )