| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfsssmf.r |
|- ( ph -> R e. SAlg ) |
| 2 |
|
smfsssmf.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfsssmf.i |
|- ( ph -> R C_ S ) |
| 4 |
|
smfsssmf.f |
|- ( ph -> F e. ( SMblFn ` R ) ) |
| 5 |
|
nfv |
|- F/ a ph |
| 6 |
|
eqid |
|- dom F = dom F |
| 7 |
1 4 6
|
smfdmss |
|- ( ph -> dom F C_ U. R ) |
| 8 |
3
|
unissd |
|- ( ph -> U. R C_ U. S ) |
| 9 |
7 8
|
sstrd |
|- ( ph -> dom F C_ U. S ) |
| 10 |
1 4 6
|
smff |
|- ( ph -> F : dom F --> RR ) |
| 11 |
|
ssrest |
|- ( ( S e. SAlg /\ R C_ S ) -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
| 12 |
2 3 11
|
syl2anc |
|- ( ph -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> R e. SAlg ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` R ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 17 |
14 15 6 16
|
smfpreimalt |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( R |`t dom F ) ) |
| 18 |
13 17
|
sseldd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
| 19 |
5 2 9 10 18
|
issmfd |
|- ( ph -> F e. ( SMblFn ` S ) ) |