Step |
Hyp |
Ref |
Expression |
1 |
|
smfsssmf.r |
|- ( ph -> R e. SAlg ) |
2 |
|
smfsssmf.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfsssmf.i |
|- ( ph -> R C_ S ) |
4 |
|
smfsssmf.f |
|- ( ph -> F e. ( SMblFn ` R ) ) |
5 |
|
nfv |
|- F/ a ph |
6 |
|
eqid |
|- dom F = dom F |
7 |
1 4 6
|
smfdmss |
|- ( ph -> dom F C_ U. R ) |
8 |
3
|
unissd |
|- ( ph -> U. R C_ U. S ) |
9 |
7 8
|
sstrd |
|- ( ph -> dom F C_ U. S ) |
10 |
1 4 6
|
smff |
|- ( ph -> F : dom F --> RR ) |
11 |
|
ssrest |
|- ( ( S e. SAlg /\ R C_ S ) -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
12 |
2 3 11
|
syl2anc |
|- ( ph -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( R |`t dom F ) C_ ( S |`t dom F ) ) |
14 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> R e. SAlg ) |
15 |
4
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` R ) ) |
16 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
17 |
14 15 6 16
|
smfpreimalt |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( R |`t dom F ) ) |
18 |
13 17
|
sseldd |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | ( F ` x ) < a } e. ( S |`t dom F ) ) |
19 |
5 2 9 10 18
|
issmfd |
|- ( ph -> F e. ( SMblFn ` S ) ) |