Metamath Proof Explorer


Theorem smfsssmf

Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfsssmf.r φRSAlg
smfsssmf.s φSSAlg
smfsssmf.i φRS
smfsssmf.f φFSMblFnR
Assertion smfsssmf φFSMblFnS

Proof

Step Hyp Ref Expression
1 smfsssmf.r φRSAlg
2 smfsssmf.s φSSAlg
3 smfsssmf.i φRS
4 smfsssmf.f φFSMblFnR
5 nfv aφ
6 eqid domF=domF
7 1 4 6 smfdmss φdomFR
8 3 unissd φRS
9 7 8 sstrd φdomFS
10 1 4 6 smff φF:domF
11 ssrest SSAlgRSR𝑡domFS𝑡domF
12 2 3 11 syl2anc φR𝑡domFS𝑡domF
13 12 adantr φaR𝑡domFS𝑡domF
14 1 adantr φaRSAlg
15 4 adantr φaFSMblFnR
16 simpr φaa
17 14 15 6 16 smfpreimalt φaxdomF|Fx<aR𝑡domF
18 13 17 sseldd φaxdomF|Fx<aS𝑡domF
19 5 2 9 10 18 issmfd φFSMblFnS