Metamath Proof Explorer


Theorem issmflelem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmflelem.x xφ
issmflelem.a aφ
issmflelem.s φSSAlg
issmflelem.d D=domF
issmflelem.i φDS
issmflelem.f φF:D
issmflelem.l φaxD|FxaS𝑡D
Assertion issmflelem φFSMblFnS

Proof

Step Hyp Ref Expression
1 issmflelem.x xφ
2 issmflelem.a aφ
3 issmflelem.s φSSAlg
4 issmflelem.d D=domF
5 issmflelem.i φDS
6 issmflelem.f φF:D
7 issmflelem.l φaxD|FxaS𝑡D
8 3 adantr φDSSSAlg
9 simpr φDSDS
10 8 9 restuni4 φDSS𝑡D=D
11 10 eqcomd φDSD=S𝑡D
12 5 11 mpdan φD=S𝑡D
13 12 rabeqdv φxD|Fx<b=xS𝑡D|Fx<b
14 13 adantr φbxD|Fx<b=xS𝑡D|Fx<b
15 nfv xb
16 1 15 nfan xφb
17 nfv ab
18 2 17 nfan aφb
19 3 uniexd φSV
20 19 adantr φDSSV
21 20 9 ssexd φDSDV
22 eqid S𝑡D=S𝑡D
23 8 21 22 subsalsal φDSS𝑡DSAlg
24 5 23 mpdan φS𝑡DSAlg
25 24 adantr φbS𝑡DSAlg
26 eqid S𝑡D=S𝑡D
27 simpr φxS𝑡DxS𝑡D
28 5 10 mpdan φS𝑡D=D
29 28 adantr φxS𝑡DS𝑡D=D
30 27 29 eleqtrd φxS𝑡DxD
31 6 ffvelcdmda φxDFx
32 30 31 syldan φxS𝑡DFx
33 32 rexrd φxS𝑡DFx*
34 33 adantlr φbxS𝑡DFx*
35 28 rabeqdv φxS𝑡D|Fxa=xD|Fxa
36 35 adantr φaxS𝑡D|Fxa=xD|Fxa
37 36 7 eqeltrd φaxS𝑡D|FxaS𝑡D
38 37 adantlr φbaxS𝑡D|FxaS𝑡D
39 simpr φbb
40 16 18 25 26 34 38 39 salpreimalelt φbxS𝑡D|Fx<bS𝑡D
41 14 40 eqeltrd φbxD|Fx<bS𝑡D
42 41 ralrimiva φbxD|Fx<bS𝑡D
43 5 6 42 3jca φDSF:DbxD|Fx<bS𝑡D
44 3 4 issmf φFSMblFnSDSF:DbxD|Fx<bS𝑡D
45 43 44 mpbird φFSMblFnS