Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issmflelem.x | |
|
issmflelem.a | |
||
issmflelem.s | |
||
issmflelem.d | |
||
issmflelem.i | |
||
issmflelem.f | |
||
issmflelem.l | |
||
Assertion | issmflelem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmflelem.x | |
|
2 | issmflelem.a | |
|
3 | issmflelem.s | |
|
4 | issmflelem.d | |
|
5 | issmflelem.i | |
|
6 | issmflelem.f | |
|
7 | issmflelem.l | |
|
8 | 3 | adantr | |
9 | simpr | |
|
10 | 8 9 | restuni4 | |
11 | 10 | eqcomd | |
12 | 5 11 | mpdan | |
13 | 12 | rabeqdv | |
14 | 13 | adantr | |
15 | nfv | |
|
16 | 1 15 | nfan | |
17 | nfv | |
|
18 | 2 17 | nfan | |
19 | 3 | uniexd | |
20 | 19 | adantr | |
21 | 20 9 | ssexd | |
22 | eqid | |
|
23 | 8 21 22 | subsalsal | |
24 | 5 23 | mpdan | |
25 | 24 | adantr | |
26 | eqid | |
|
27 | simpr | |
|
28 | 5 10 | mpdan | |
29 | 28 | adantr | |
30 | 27 29 | eleqtrd | |
31 | 6 | ffvelcdmda | |
32 | 30 31 | syldan | |
33 | 32 | rexrd | |
34 | 33 | adantlr | |
35 | 28 | rabeqdv | |
36 | 35 | adantr | |
37 | 36 7 | eqeltrd | |
38 | 37 | adantlr | |
39 | simpr | |
|
40 | 16 18 25 26 34 38 39 | salpreimalelt | |
41 | 14 40 | eqeltrd | |
42 | 41 | ralrimiva | |
43 | 5 6 42 | 3jca | |
44 | 3 4 | issmf | |
45 | 43 44 | mpbird | |