Metamath Proof Explorer


Theorem issmflelem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmflelem.x x φ
issmflelem.a a φ
issmflelem.s φ S SAlg
issmflelem.d D = dom F
issmflelem.i φ D S
issmflelem.f φ F : D
issmflelem.l φ a x D | F x a S 𝑡 D
Assertion issmflelem φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmflelem.x x φ
2 issmflelem.a a φ
3 issmflelem.s φ S SAlg
4 issmflelem.d D = dom F
5 issmflelem.i φ D S
6 issmflelem.f φ F : D
7 issmflelem.l φ a x D | F x a S 𝑡 D
8 3 adantr φ D S S SAlg
9 simpr φ D S D S
10 8 9 restuni4 φ D S S 𝑡 D = D
11 10 eqcomd φ D S D = S 𝑡 D
12 5 11 mpdan φ D = S 𝑡 D
13 12 rabeqdv φ x D | F x < b = x S 𝑡 D | F x < b
14 13 adantr φ b x D | F x < b = x S 𝑡 D | F x < b
15 nfv x b
16 1 15 nfan x φ b
17 nfv a b
18 2 17 nfan a φ b
19 3 uniexd φ S V
20 19 adantr φ D S S V
21 20 9 ssexd φ D S D V
22 eqid S 𝑡 D = S 𝑡 D
23 8 21 22 subsalsal φ D S S 𝑡 D SAlg
24 5 23 mpdan φ S 𝑡 D SAlg
25 24 adantr φ b S 𝑡 D SAlg
26 eqid S 𝑡 D = S 𝑡 D
27 simpr φ x S 𝑡 D x S 𝑡 D
28 5 10 mpdan φ S 𝑡 D = D
29 28 adantr φ x S 𝑡 D S 𝑡 D = D
30 27 29 eleqtrd φ x S 𝑡 D x D
31 6 ffvelrnda φ x D F x
32 30 31 syldan φ x S 𝑡 D F x
33 32 rexrd φ x S 𝑡 D F x *
34 33 adantlr φ b x S 𝑡 D F x *
35 28 rabeqdv φ x S 𝑡 D | F x a = x D | F x a
36 35 adantr φ a x S 𝑡 D | F x a = x D | F x a
37 36 7 eqeltrd φ a x S 𝑡 D | F x a S 𝑡 D
38 37 adantlr φ b a x S 𝑡 D | F x a S 𝑡 D
39 simpr φ b b
40 16 18 25 26 34 38 39 salpreimalelt φ b x S 𝑡 D | F x < b S 𝑡 D
41 14 40 eqeltrd φ b x D | F x < b S 𝑡 D
42 41 ralrimiva φ b x D | F x < b S 𝑡 D
43 5 6 42 3jca φ D S F : D b x D | F x < b S 𝑡 D
44 3 4 issmf φ F SMblFn S D S F : D b x D | F x < b S 𝑡 D
45 43 44 mpbird φ F SMblFn S