Metamath Proof Explorer


Theorem issmflelem

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be a subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmflelem.x 𝑥 𝜑
issmflelem.a 𝑎 𝜑
issmflelem.s ( 𝜑𝑆 ∈ SAlg )
issmflelem.d 𝐷 = dom 𝐹
issmflelem.i ( 𝜑𝐷 𝑆 )
issmflelem.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
issmflelem.l ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
Assertion issmflelem ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issmflelem.x 𝑥 𝜑
2 issmflelem.a 𝑎 𝜑
3 issmflelem.s ( 𝜑𝑆 ∈ SAlg )
4 issmflelem.d 𝐷 = dom 𝐹
5 issmflelem.i ( 𝜑𝐷 𝑆 )
6 issmflelem.f ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
7 issmflelem.l ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
8 3 adantr ( ( 𝜑𝐷 𝑆 ) → 𝑆 ∈ SAlg )
9 simpr ( ( 𝜑𝐷 𝑆 ) → 𝐷 𝑆 )
10 8 9 restuni4 ( ( 𝜑𝐷 𝑆 ) → ( 𝑆t 𝐷 ) = 𝐷 )
11 10 eqcomd ( ( 𝜑𝐷 𝑆 ) → 𝐷 = ( 𝑆t 𝐷 ) )
12 5 11 mpdan ( 𝜑𝐷 = ( 𝑆t 𝐷 ) )
13 12 rabeqdv ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } = { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } )
14 13 adantr ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } = { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } )
15 nfv 𝑥 𝑏 ∈ ℝ
16 1 15 nfan 𝑥 ( 𝜑𝑏 ∈ ℝ )
17 nfv 𝑎 𝑏 ∈ ℝ
18 2 17 nfan 𝑎 ( 𝜑𝑏 ∈ ℝ )
19 3 uniexd ( 𝜑 𝑆 ∈ V )
20 19 adantr ( ( 𝜑𝐷 𝑆 ) → 𝑆 ∈ V )
21 20 9 ssexd ( ( 𝜑𝐷 𝑆 ) → 𝐷 ∈ V )
22 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
23 8 21 22 subsalsal ( ( 𝜑𝐷 𝑆 ) → ( 𝑆t 𝐷 ) ∈ SAlg )
24 5 23 mpdan ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
25 24 adantr ( ( 𝜑𝑏 ∈ ℝ ) → ( 𝑆t 𝐷 ) ∈ SAlg )
26 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
27 simpr ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → 𝑥 ( 𝑆t 𝐷 ) )
28 5 10 mpdan ( 𝜑 ( 𝑆t 𝐷 ) = 𝐷 )
29 28 adantr ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝑆t 𝐷 ) = 𝐷 )
30 27 29 eleqtrd ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → 𝑥𝐷 )
31 6 ffvelrnda ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ )
32 30 31 syldan ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
33 32 rexrd ( ( 𝜑𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
34 33 adantlr ( ( ( 𝜑𝑏 ∈ ℝ ) ∧ 𝑥 ( 𝑆t 𝐷 ) ) → ( 𝐹𝑥 ) ∈ ℝ* )
35 28 rabeqdv ( 𝜑 → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) ≤ 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } )
36 35 adantr ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) ≤ 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } )
37 36 7 eqeltrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
38 37 adantlr ( ( ( 𝜑𝑏 ∈ ℝ ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
39 simpr ( ( 𝜑𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ )
40 16 18 25 26 34 38 39 salpreimalelt ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥 ( 𝑆t 𝐷 ) ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
41 14 40 eqeltrd ( ( 𝜑𝑏 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
42 41 ralrimiva ( 𝜑 → ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) )
43 5 6 42 3jca ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
44 3 4 issmf ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) )
45 43 44 mpbird ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )