| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issmflelem.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
issmflelem.a |
⊢ Ⅎ 𝑎 𝜑 |
| 3 |
|
issmflelem.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
issmflelem.d |
⊢ 𝐷 = dom 𝐹 |
| 5 |
|
issmflelem.i |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
| 6 |
|
issmflelem.f |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
| 7 |
|
issmflelem.l |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝑆 ∈ SAlg ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ⊆ ∪ 𝑆 ) |
| 10 |
8 9
|
restuni4 |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
| 11 |
10
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
| 12 |
5 11
|
mpdan |
⊢ ( 𝜑 → 𝐷 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
| 13 |
12
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } = { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } = { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑥 𝑏 ∈ ℝ |
| 16 |
1 15
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑏 ∈ ℝ ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑎 𝑏 ∈ ℝ |
| 18 |
2 17
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ 𝑏 ∈ ℝ ) |
| 19 |
3
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ∪ 𝑆 ∈ V ) |
| 21 |
20 9
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ∈ V ) |
| 22 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
| 23 |
8 21 22
|
subsalsal |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
| 24 |
5 23
|
mpdan |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
| 26 |
|
eqid |
⊢ ∪ ( 𝑆 ↾t 𝐷 ) = ∪ ( 𝑆 ↾t 𝐷 ) |
| 27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) |
| 28 |
5 10
|
mpdan |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
| 30 |
27 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → 𝑥 ∈ 𝐷 ) |
| 31 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 32 |
30 31
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 33 |
32
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) ∧ 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 35 |
28
|
rabeqdv |
⊢ ( 𝜑 → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ) |
| 37 |
36 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
| 40 |
16 18 25 26 34 38 39
|
salpreimalelt |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ ∪ ( 𝑆 ↾t 𝐷 ) ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 41 |
14 40
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 43 |
5 6 42
|
3jca |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
| 44 |
3 4
|
issmf |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
| 45 |
43 44
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |