Step |
Hyp |
Ref |
Expression |
1 |
|
issmfle.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
issmfle.d |
⊢ 𝐷 = dom 𝐹 |
3 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝑆 ∈ SAlg ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
3 4 2
|
smfdmss |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
6 |
3 4 2
|
smff |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
7 |
|
nfv |
⊢ Ⅎ 𝑏 𝜑 |
8 |
|
nfv |
⊢ Ⅎ 𝑏 𝐹 ∈ ( SMblFn ‘ 𝑆 ) |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
11 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 ∈ ( SMblFn ‘ 𝑆 ) |
12 |
10 11
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
13 |
|
nfv |
⊢ Ⅎ 𝑦 𝑏 ∈ ℝ |
14 |
12 13
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) |
15 |
|
nfv |
⊢ Ⅎ 𝑐 ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) |
16 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → ∪ 𝑆 ∈ V ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ⊆ ∪ 𝑆 ) |
19 |
17 18
|
ssexd |
⊢ ( ( 𝜑 ∧ 𝐷 ⊆ ∪ 𝑆 ) → 𝐷 ∈ V ) |
20 |
5 19
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
22 |
3 20 21
|
subsalsal |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
24 |
6
|
frexr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ* ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ* ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑦 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ* ) |
27 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
28 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ ) |
30 |
27 28 2 29
|
smfpreimalt |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑐 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
31 |
30
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑐 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) < 𝑐 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
33 |
14 15 23 26 31 32
|
salpreimaltle |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝑏 ∈ ℝ → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
35 |
9 34
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
36 |
5 6 35
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
38 |
|
nfv |
⊢ Ⅎ 𝑦 𝐷 ⊆ ∪ 𝑆 |
39 |
|
nfv |
⊢ Ⅎ 𝑦 𝐹 : 𝐷 ⟶ ℝ |
40 |
|
nfcv |
⊢ Ⅎ 𝑦 ℝ |
41 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } |
42 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑆 ↾t 𝐷 ) |
43 |
41 42
|
nfel |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) |
44 |
40 43
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) |
45 |
38 39 44
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
46 |
10 45
|
nfan |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
47 |
|
nfv |
⊢ Ⅎ 𝑏 𝐷 ⊆ ∪ 𝑆 |
48 |
|
nfv |
⊢ Ⅎ 𝑏 𝐹 : 𝐷 ⟶ ℝ |
49 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) |
50 |
47 48 49
|
nf3an |
⊢ Ⅎ 𝑏 ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
51 |
7 50
|
nfan |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
52 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝑆 ∈ SAlg ) |
53 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐷 ⊆ ∪ 𝑆 ) |
54 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 : 𝐷 ⟶ ℝ ) |
55 |
|
rspa |
⊢ ( ( ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ∧ 𝑏 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
56 |
55
|
3ad2antl3 |
⊢ ( ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
57 |
56
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
58 |
46 51 52 2 53 54 57
|
issmflelem |
⊢ ( ( 𝜑 ∧ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
59 |
58
|
ex |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ) |
60 |
37 59
|
impbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
61 |
|
breq2 |
⊢ ( 𝑏 = 𝑎 → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑎 ) ) |
62 |
61
|
rabbidv |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } = { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑎 } ) |
63 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
64 |
63
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ≤ 𝑎 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 ) ) |
65 |
64
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } |
66 |
65
|
a1i |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑎 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ) |
67 |
62 66
|
eqtrd |
⊢ ( 𝑏 = 𝑎 → { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ) |
68 |
67
|
eleq1d |
⊢ ( 𝑏 = 𝑎 → ( { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
69 |
68
|
cbvralvw |
⊢ ( ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
70 |
69
|
3anbi3i |
⊢ ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
71 |
70
|
a1i |
⊢ ( 𝜑 → ( ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑦 ) ≤ 𝑏 } ∈ ( 𝑆 ↾t 𝐷 ) ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
72 |
60 71
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ≤ 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |