Metamath Proof Explorer


Theorem issmfle

Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra S ". A function is measurable iff the preimages of all right-closed intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of F is required to be b subset of the underlying set of S . Definition 121C of Fremlin1 p. 36, and Proposition 121B (ii) of Fremlin1 p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfle.s ( 𝜑𝑆 ∈ SAlg )
issmfle.d 𝐷 = dom 𝐹
Assertion issmfle ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 issmfle.s ( 𝜑𝑆 ∈ SAlg )
2 issmfle.d 𝐷 = dom 𝐹
3 1 adantr ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝑆 ∈ SAlg )
4 simpr ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
5 3 4 2 smfdmss ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 𝑆 )
6 3 4 2 smff ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ )
7 nfv 𝑏 𝜑
8 nfv 𝑏 𝐹 ∈ ( SMblFn ‘ 𝑆 )
9 7 8 nfan 𝑏 ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
10 nfv 𝑦 𝜑
11 nfv 𝑦 𝐹 ∈ ( SMblFn ‘ 𝑆 )
12 10 11 nfan 𝑦 ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
13 nfv 𝑦 𝑏 ∈ ℝ
14 12 13 nfan 𝑦 ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ )
15 nfv 𝑐 ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ )
16 1 uniexd ( 𝜑 𝑆 ∈ V )
17 16 adantr ( ( 𝜑𝐷 𝑆 ) → 𝑆 ∈ V )
18 simpr ( ( 𝜑𝐷 𝑆 ) → 𝐷 𝑆 )
19 17 18 ssexd ( ( 𝜑𝐷 𝑆 ) → 𝐷 ∈ V )
20 5 19 syldan ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐷 ∈ V )
21 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
22 3 20 21 subsalsal ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝑆t 𝐷 ) ∈ SAlg )
23 22 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → ( 𝑆t 𝐷 ) ∈ SAlg )
24 6 frexr ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → 𝐹 : 𝐷 ⟶ ℝ* )
25 24 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → 𝐹 : 𝐷 ⟶ ℝ* )
26 25 ffvelrnda ( ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑦𝐷 ) → ( 𝐹𝑦 ) ∈ ℝ* )
27 3 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑆 ∈ SAlg )
28 4 adantr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
29 simpr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → 𝑐 ∈ ℝ )
30 27 28 2 29 smfpreimalt ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑐 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑐 } ∈ ( 𝑆t 𝐷 ) )
31 30 adantlr ( ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑐 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) < 𝑐 } ∈ ( 𝑆t 𝐷 ) )
32 simpr ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ )
33 14 15 23 26 31 32 salpreimaltle ( ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
34 33 ex ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝑏 ∈ ℝ → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
35 9 34 ralrimi ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
36 5 6 35 3jca ( ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
37 36 ex ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) )
38 nfv 𝑦 𝐷 𝑆
39 nfv 𝑦 𝐹 : 𝐷 ⟶ ℝ
40 nfcv 𝑦
41 nfrab1 𝑦 { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 }
42 nfcv 𝑦 ( 𝑆t 𝐷 )
43 41 42 nfel 𝑦 { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 )
44 40 43 nfralw 𝑦𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 )
45 38 39 44 nf3an 𝑦 ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
46 10 45 nfan 𝑦 ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
47 nfv 𝑏 𝐷 𝑆
48 nfv 𝑏 𝐹 : 𝐷 ⟶ ℝ
49 nfra1 𝑏𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 )
50 47 48 49 nf3an 𝑏 ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
51 7 50 nfan 𝑏 ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) )
52 1 adantr ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝑆 ∈ SAlg )
53 simpr1 ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐷 𝑆 )
54 simpr2 ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐹 : 𝐷 ⟶ ℝ )
55 rspa ( ( ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ∧ 𝑏 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
56 55 3ad2antl3 ( ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
57 56 adantll ( ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) ∧ 𝑏 ∈ ℝ ) → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) )
58 46 51 52 2 53 54 57 issmflelem ( ( 𝜑 ∧ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
59 58 ex ( 𝜑 → ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) )
60 37 59 impbid ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ) )
61 breq2 ( 𝑏 = 𝑎 → ( ( 𝐹𝑦 ) ≤ 𝑏 ↔ ( 𝐹𝑦 ) ≤ 𝑎 ) )
62 61 rabbidv ( 𝑏 = 𝑎 → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } = { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑎 } )
63 fveq2 ( 𝑦 = 𝑥 → ( 𝐹𝑦 ) = ( 𝐹𝑥 ) )
64 63 breq1d ( 𝑦 = 𝑥 → ( ( 𝐹𝑦 ) ≤ 𝑎 ↔ ( 𝐹𝑥 ) ≤ 𝑎 ) )
65 64 cbvrabv { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 }
66 65 a1i ( 𝑏 = 𝑎 → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑎 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } )
67 62 66 eqtrd ( 𝑏 = 𝑎 → { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } )
68 67 eleq1d ( 𝑏 = 𝑎 → ( { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ↔ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
69 68 cbvralvw ( ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ↔ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) )
70 69 3anbi3i ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
71 70 a1i ( 𝜑 → ( ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑏 ∈ ℝ { 𝑦𝐷 ∣ ( 𝐹𝑦 ) ≤ 𝑏 } ∈ ( 𝑆t 𝐷 ) ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
72 60 71 bitrd ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ≤ 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )