Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfpimltmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpimltmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
smfpimltmpt.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfpimltmpt.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
6 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
6 2 4 7 5
|
smfpreimaltf |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
1 9 3
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
11 |
6
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
13 |
11 12
|
rabeqf |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
14 |
10 13
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
15 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
16 |
15 3
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
17 |
16
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ 𝐵 < 𝑅 ) ) |
18 |
1 17
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
19 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
20 |
14 18 19
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
21 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
23 |
20 22
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
24 |
8 23
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ) |