Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxr.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
smfpimltxr.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpimltxr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
smfpimltxr.d |
⊢ 𝐷 = dom 𝐹 |
5 |
|
smfpimltxr.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
6 |
|
breq2 |
⊢ ( 𝐴 = +∞ → ( ( 𝐹 ‘ 𝑥 ) < 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) < +∞ ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝐴 = +∞ → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } ) |
9 |
1 2 4
|
issmff |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) ) |
10 |
3 9
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 ⊆ ∪ 𝑆 ∧ 𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
11 |
10
|
simp2d |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
12 |
1 11
|
pimltpnf2 |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐷 ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐷 ) |
14 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → 𝐷 = 𝐷 ) |
15 |
8 13 14
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = 𝐷 ) |
16 |
10
|
simp1d |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
17 |
2 16
|
restuni4 |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) = 𝐷 ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → 𝐷 = ∪ ( 𝑆 ↾t 𝐷 ) ) |
19 |
3
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
20 |
4 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
22 |
2 20 21
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
23 |
22
|
salunid |
⊢ ( 𝜑 → ∪ ( 𝑆 ↾t 𝐷 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
24 |
18 23
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
26 |
15 25
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
27 |
|
neqne |
⊢ ( ¬ 𝐴 = +∞ → 𝐴 ≠ +∞ ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ +∞ ) |
29 |
|
breq2 |
⊢ ( 𝐴 = -∞ → ( ( 𝐹 ‘ 𝑥 ) < 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) < -∞ ) ) |
30 |
29
|
rabbidv |
⊢ ( 𝐴 = -∞ → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } ) |
32 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → 𝐹 : 𝐷 ⟶ ℝ ) |
33 |
1 32
|
pimltmnf2 |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } = ∅ ) |
34 |
31 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = ∅ ) |
35 |
22
|
0sald |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
37 |
34 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
38 |
37
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
39 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝜑 ) |
40 |
39 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* ) |
41 |
|
neqne |
⊢ ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ ) |
43 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ +∞ ) |
44 |
40 42 43
|
xrred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) |
45 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
48 |
1 45 46 4 47
|
smfpreimaltf |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
49 |
39 44 48
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
50 |
38 49
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
51 |
28 50
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
52 |
26 51
|
pm2.61dan |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |