Metamath Proof Explorer


Theorem smfpimltxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimltxr.x 𝑥 𝐹
smfpimltxr.s ( 𝜑𝑆 ∈ SAlg )
smfpimltxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a ( 𝜑𝐴 ∈ ℝ* )
Assertion smfpimltxr ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimltxr.x 𝑥 𝐹
2 smfpimltxr.s ( 𝜑𝑆 ∈ SAlg )
3 smfpimltxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 smfpimltxr.d 𝐷 = dom 𝐹
5 smfpimltxr.a ( 𝜑𝐴 ∈ ℝ* )
6 breq2 ( 𝐴 = +∞ → ( ( 𝐹𝑥 ) < 𝐴 ↔ ( 𝐹𝑥 ) < +∞ ) )
7 6 rabbidv ( 𝐴 = +∞ → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } )
8 1 nfdm 𝑥 dom 𝐹
9 4 8 nfcxfr 𝑥 𝐷
10 2 3 4 smff ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
11 1 9 10 pimltpnf2f ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐷 )
12 7 11 sylan9eqr ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = 𝐷 )
13 2 3 4 smfdmss ( 𝜑𝐷 𝑆 )
14 2 13 subsaluni ( 𝜑𝐷 ∈ ( 𝑆t 𝐷 ) )
15 14 adantr ( ( 𝜑𝐴 = +∞ ) → 𝐷 ∈ ( 𝑆t 𝐷 ) )
16 12 15 eqeltrd ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
17 breq2 ( 𝐴 = -∞ → ( ( 𝐹𝑥 ) < 𝐴 ↔ ( 𝐹𝑥 ) < -∞ ) )
18 17 rabbidv ( 𝐴 = -∞ → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } )
19 18 adantl ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } )
20 10 adantr ( ( 𝜑𝐴 = -∞ ) → 𝐹 : 𝐷 ⟶ ℝ )
21 1 9 20 pimltmnf2f ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } = ∅ )
22 19 21 eqtrd ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = ∅ )
23 3 dmexd ( 𝜑 → dom 𝐹 ∈ V )
24 4 23 eqeltrid ( 𝜑𝐷 ∈ V )
25 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
26 2 24 25 subsalsal ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
27 26 0sald ( 𝜑 → ∅ ∈ ( 𝑆t 𝐷 ) )
28 27 adantr ( ( 𝜑𝐴 = -∞ ) → ∅ ∈ ( 𝑆t 𝐷 ) )
29 22 28 eqeltrd ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
30 29 adantlr ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ 𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
31 simpll ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝜑 )
32 31 5 syl ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* )
33 neqne ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ )
34 33 adantl ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ )
35 simplr ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ +∞ )
36 32 34 35 xrred ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ )
37 2 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg )
38 3 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
39 simpr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ )
40 1 37 38 4 39 smfpreimaltf ( ( 𝜑𝐴 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
41 31 36 40 syl2anc ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
42 30 41 pm2.61dan ( ( 𝜑𝐴 ≠ +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
43 16 42 pm2.61dane ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )