Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxr.x |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
smfpimltxr.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpimltxr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
4 |
|
smfpimltxr.d |
⊢ 𝐷 = dom 𝐹 |
5 |
|
smfpimltxr.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
6 |
|
breq2 |
⊢ ( 𝐴 = +∞ → ( ( 𝐹 ‘ 𝑥 ) < 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) < +∞ ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝐴 = +∞ → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } ) |
8 |
1
|
nfdm |
⊢ Ⅎ 𝑥 dom 𝐹 |
9 |
4 8
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐷 |
10 |
2 3 4
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
11 |
1 9 10
|
pimltpnf2f |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < +∞ } = 𝐷 ) |
12 |
7 11
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = 𝐷 ) |
13 |
2 3 4
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
14 |
2 13
|
subsaluni |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → 𝐷 ∈ ( 𝑆 ↾t 𝐷 ) ) |
16 |
12 15
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
17 |
|
breq2 |
⊢ ( 𝐴 = -∞ → ( ( 𝐹 ‘ 𝑥 ) < 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) < -∞ ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝐴 = -∞ → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → 𝐹 : 𝐷 ⟶ ℝ ) |
21 |
1 9 20
|
pimltmnf2f |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < -∞ } = ∅ ) |
22 |
19 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } = ∅ ) |
23 |
3
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
24 |
4 23
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
25 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐷 ) = ( 𝑆 ↾t 𝐷 ) |
26 |
2 24 25
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐷 ) ∈ SAlg ) |
27 |
26
|
0sald |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → ∅ ∈ ( 𝑆 ↾t 𝐷 ) ) |
29 |
22 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
30 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
31 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝜑 ) |
32 |
31 5
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* ) |
33 |
|
neqne |
⊢ ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ ) |
35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ +∞ ) |
36 |
32 34 35
|
xrred |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
40 |
1 37 38 4 39
|
smfpreimaltf |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
41 |
31 36 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
42 |
30 41
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ +∞ ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |
43 |
16 42
|
pm2.61dane |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) < 𝐴 } ∈ ( 𝑆 ↾t 𝐷 ) ) |