Metamath Proof Explorer


Theorem smfpimltxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimltxr.x 𝑥 𝐹
smfpimltxr.s ( 𝜑𝑆 ∈ SAlg )
smfpimltxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a ( 𝜑𝐴 ∈ ℝ* )
Assertion smfpimltxr ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimltxr.x 𝑥 𝐹
2 smfpimltxr.s ( 𝜑𝑆 ∈ SAlg )
3 smfpimltxr.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
4 smfpimltxr.d 𝐷 = dom 𝐹
5 smfpimltxr.a ( 𝜑𝐴 ∈ ℝ* )
6 breq2 ( 𝐴 = +∞ → ( ( 𝐹𝑥 ) < 𝐴 ↔ ( 𝐹𝑥 ) < +∞ ) )
7 6 rabbidv ( 𝐴 = +∞ → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } )
8 7 adantl ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } )
9 1 2 4 issmff ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ↔ ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) ) )
10 3 9 mpbid ( 𝜑 → ( 𝐷 𝑆𝐹 : 𝐷 ⟶ ℝ ∧ ∀ 𝑎 ∈ ℝ { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐷 ) ) )
11 10 simp2d ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
12 1 11 pimltpnf2 ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐷 )
13 12 adantr ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < +∞ } = 𝐷 )
14 eqidd ( ( 𝜑𝐴 = +∞ ) → 𝐷 = 𝐷 )
15 8 13 14 3eqtrd ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = 𝐷 )
16 10 simp1d ( 𝜑𝐷 𝑆 )
17 2 16 restuni4 ( 𝜑 ( 𝑆t 𝐷 ) = 𝐷 )
18 17 eqcomd ( 𝜑𝐷 = ( 𝑆t 𝐷 ) )
19 3 dmexd ( 𝜑 → dom 𝐹 ∈ V )
20 4 19 eqeltrid ( 𝜑𝐷 ∈ V )
21 eqid ( 𝑆t 𝐷 ) = ( 𝑆t 𝐷 )
22 2 20 21 subsalsal ( 𝜑 → ( 𝑆t 𝐷 ) ∈ SAlg )
23 22 salunid ( 𝜑 ( 𝑆t 𝐷 ) ∈ ( 𝑆t 𝐷 ) )
24 18 23 eqeltrd ( 𝜑𝐷 ∈ ( 𝑆t 𝐷 ) )
25 24 adantr ( ( 𝜑𝐴 = +∞ ) → 𝐷 ∈ ( 𝑆t 𝐷 ) )
26 15 25 eqeltrd ( ( 𝜑𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
27 neqne ( ¬ 𝐴 = +∞ → 𝐴 ≠ +∞ )
28 27 adantl ( ( 𝜑 ∧ ¬ 𝐴 = +∞ ) → 𝐴 ≠ +∞ )
29 breq2 ( 𝐴 = -∞ → ( ( 𝐹𝑥 ) < 𝐴 ↔ ( 𝐹𝑥 ) < -∞ ) )
30 29 rabbidv ( 𝐴 = -∞ → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } )
31 30 adantl ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } )
32 11 adantr ( ( 𝜑𝐴 = -∞ ) → 𝐹 : 𝐷 ⟶ ℝ )
33 1 32 pimltmnf2 ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < -∞ } = ∅ )
34 31 33 eqtrd ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } = ∅ )
35 22 0sald ( 𝜑 → ∅ ∈ ( 𝑆t 𝐷 ) )
36 35 adantr ( ( 𝜑𝐴 = -∞ ) → ∅ ∈ ( 𝑆t 𝐷 ) )
37 34 36 eqeltrd ( ( 𝜑𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
38 37 adantlr ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ 𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
39 simpll ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝜑 )
40 39 5 syl ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ* )
41 neqne ( ¬ 𝐴 = -∞ → 𝐴 ≠ -∞ )
42 41 adantl ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ -∞ )
43 simplr ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ≠ +∞ )
44 40 42 43 xrred ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → 𝐴 ∈ ℝ )
45 2 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝑆 ∈ SAlg )
46 3 adantr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
47 simpr ( ( 𝜑𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ )
48 1 45 46 4 47 smfpreimaltf ( ( 𝜑𝐴 ∈ ℝ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
49 39 44 48 syl2anc ( ( ( 𝜑𝐴 ≠ +∞ ) ∧ ¬ 𝐴 = -∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
50 38 49 pm2.61dan ( ( 𝜑𝐴 ≠ +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
51 28 50 syldan ( ( 𝜑 ∧ ¬ 𝐴 = +∞ ) → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )
52 26 51 pm2.61dan ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) < 𝐴 } ∈ ( 𝑆t 𝐷 ) )