Metamath Proof Explorer


Theorem issmfdmpt

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfdmpt.x 𝑥 𝜑
issmfdmpt.a 𝑎 𝜑
issmfdmpt.s ( 𝜑𝑆 ∈ SAlg )
issmfdmpt.i ( 𝜑𝐴 𝑆 )
issmfdmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
issmfdmpt.p ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴𝐵 < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
Assertion issmfdmpt ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 issmfdmpt.x 𝑥 𝜑
2 issmfdmpt.a 𝑎 𝜑
3 issmfdmpt.s ( 𝜑𝑆 ∈ SAlg )
4 issmfdmpt.i ( 𝜑𝐴 𝑆 )
5 issmfdmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
6 issmfdmpt.p ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴𝐵 < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
7 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
8 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
9 1 5 8 fmptdf ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )
10 eqidd ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 ) )
11 10 5 fvmpt2d ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
12 11 breq1d ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎𝐵 < 𝑎 ) )
13 12 ex ( 𝜑 → ( 𝑥𝐴 → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎𝐵 < 𝑎 ) ) )
14 1 13 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎𝐵 < 𝑎 ) )
15 rabbi ( ∀ 𝑥𝐴 ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎𝐵 < 𝑎 ) ↔ { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥𝐴𝐵 < 𝑎 } )
16 14 15 sylib ( 𝜑 → { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥𝐴𝐵 < 𝑎 } )
17 16 adantr ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥𝐴𝐵 < 𝑎 } )
18 17 6 eqeltrd ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
19 7 2 3 4 9 18 issmfdf ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )