Step |
Hyp |
Ref |
Expression |
1 |
|
issmfdmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
issmfdmpt.a |
⊢ Ⅎ 𝑎 𝜑 |
3 |
|
issmfdmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
issmfdmpt.i |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) |
5 |
|
issmfdmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
6 |
|
issmfdmpt.p |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
7 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
1 5 8
|
fmptdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
11 |
10 5
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
12 |
11
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ 𝐵 < 𝑎 ) ) |
13 |
12
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ 𝐵 < 𝑎 ) ) ) |
14 |
1 13
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ 𝐵 < 𝑎 ) ) |
15 |
|
rabbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 ↔ 𝐵 < 𝑎 ) ↔ { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎 } ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎 } ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑎 } ) |
18 |
17 6
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
19 |
7 2 3 4 9 18
|
issmfdf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |