| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfconst.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfconst.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfconst.a |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) |
| 4 |
|
smfconst.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
smfconst.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 6 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 7 |
5 6
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 8 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 10 |
1 9 5
|
fmptdf |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ∈ ℝ |
| 12 |
1 11
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 < 𝑎 |
| 14 |
12 13
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) |
| 15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐵 ∈ ℝ ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐵 < 𝑎 ) |
| 17 |
14 15 5 16
|
pimconstlt1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = 𝐴 ) |
| 18 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 = 𝐴 ) |
| 19 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ∪ 𝑆 ↔ ( ∪ 𝑆 ∩ 𝐴 ) = 𝐴 ) |
| 20 |
3 19
|
sylib |
⊢ ( 𝜑 → ( ∪ 𝑆 ∩ 𝐴 ) = 𝐴 ) |
| 21 |
20
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ∪ 𝑆 ∩ 𝐴 ) ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 = ( ∪ 𝑆 ∩ 𝐴 ) ) |
| 23 |
17 18 22
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ( ∪ 𝑆 ∩ 𝐴 ) ) |
| 24 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝑆 ∈ SAlg ) |
| 25 |
2
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
| 26 |
25 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 ∈ V ) |
| 28 |
24
|
salunid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → ∪ 𝑆 ∈ 𝑆 ) |
| 29 |
|
eqid |
⊢ ( ∪ 𝑆 ∩ 𝐴 ) = ( ∪ 𝑆 ∩ 𝐴 ) |
| 30 |
24 27 28 29
|
elrestd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → ( ∪ 𝑆 ∩ 𝐴 ) ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 31 |
23 30
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 32 |
|
nfv |
⊢ Ⅎ 𝑥 ¬ 𝐵 < 𝑎 |
| 33 |
12 32
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) |
| 34 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝐵 ∈ ℝ ) |
| 35 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
| 36 |
35
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎 ∈ ℝ* ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ¬ 𝐵 < 𝑎 ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎 ∈ ℝ ) |
| 39 |
38 34
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ( 𝑎 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑎 ) ) |
| 40 |
37 39
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎 ≤ 𝐵 ) |
| 41 |
33 34 5 36 40
|
pimconstlt0 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } = ∅ ) |
| 42 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t 𝐴 ) |
| 43 |
2 26 42
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) ∈ SAlg ) |
| 44 |
43
|
0sald |
⊢ ( 𝜑 → ∅ ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ∅ ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 46 |
41 45
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 47 |
31 46
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐴 ) ) |
| 48 |
7 8 2 3 10 47
|
issmfdf |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |