Metamath Proof Explorer


Theorem smfconst

Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfconst.x 𝑥 𝜑
smfconst.s ( 𝜑𝑆 ∈ SAlg )
smfconst.a ( 𝜑𝐴 𝑆 )
smfconst.b ( 𝜑𝐵 ∈ ℝ )
smfconst.f 𝐹 = ( 𝑥𝐴𝐵 )
Assertion smfconst ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 smfconst.x 𝑥 𝜑
2 smfconst.s ( 𝜑𝑆 ∈ SAlg )
3 smfconst.a ( 𝜑𝐴 𝑆 )
4 smfconst.b ( 𝜑𝐵 ∈ ℝ )
5 smfconst.f 𝐹 = ( 𝑥𝐴𝐵 )
6 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
7 5 6 nfcxfr 𝑥 𝐹
8 nfv 𝑎 𝜑
9 4 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
10 1 9 5 fmptdf ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
11 nfv 𝑥 𝑎 ∈ ℝ
12 1 11 nfan 𝑥 ( 𝜑𝑎 ∈ ℝ )
13 nfv 𝑥 𝐵 < 𝑎
14 12 13 nfan 𝑥 ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 )
15 4 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐵 ∈ ℝ )
16 simpr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐵 < 𝑎 )
17 14 15 5 16 pimconstlt1 ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } = 𝐴 )
18 eqidd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 = 𝐴 )
19 sseqin2 ( 𝐴 𝑆 ↔ ( 𝑆𝐴 ) = 𝐴 )
20 3 19 sylib ( 𝜑 → ( 𝑆𝐴 ) = 𝐴 )
21 20 eqcomd ( 𝜑𝐴 = ( 𝑆𝐴 ) )
22 21 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 = ( 𝑆𝐴 ) )
23 17 18 22 3eqtrd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } = ( 𝑆𝐴 ) )
24 2 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝑆 ∈ SAlg )
25 2 uniexd ( 𝜑 𝑆 ∈ V )
26 25 3 ssexd ( 𝜑𝐴 ∈ V )
27 26 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝐴 ∈ V )
28 24 salunid ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → 𝑆𝑆 )
29 eqid ( 𝑆𝐴 ) = ( 𝑆𝐴 )
30 24 27 28 29 elrestd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → ( 𝑆𝐴 ) ∈ ( 𝑆t 𝐴 ) )
31 23 30 eqeltrd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ 𝐵 < 𝑎 ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
32 nfv 𝑥 ¬ 𝐵 < 𝑎
33 12 32 nfan 𝑥 ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 )
34 4 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝐵 ∈ ℝ )
35 rexr ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* )
36 35 ad2antlr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎 ∈ ℝ* )
37 simpr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ¬ 𝐵 < 𝑎 )
38 simplr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎 ∈ ℝ )
39 38 34 lenltd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ( 𝑎𝐵 ↔ ¬ 𝐵 < 𝑎 ) )
40 37 39 mpbird ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → 𝑎𝐵 )
41 33 34 5 36 40 pimconstlt0 ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } = ∅ )
42 eqid ( 𝑆t 𝐴 ) = ( 𝑆t 𝐴 )
43 2 26 42 subsalsal ( 𝜑 → ( 𝑆t 𝐴 ) ∈ SAlg )
44 43 0sald ( 𝜑 → ∅ ∈ ( 𝑆t 𝐴 ) )
45 44 ad2antrr ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → ∅ ∈ ( 𝑆t 𝐴 ) )
46 41 45 eqeltrd ( ( ( 𝜑𝑎 ∈ ℝ ) ∧ ¬ 𝐵 < 𝑎 ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
47 31 46 pm2.61dan ( ( 𝜑𝑎 ∈ ℝ ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) < 𝑎 } ∈ ( 𝑆t 𝐴 ) )
48 7 8 2 3 10 47 issmfdf ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )