Metamath Proof Explorer


Theorem smfconst

Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfconst.x x φ
smfconst.s φ S SAlg
smfconst.a φ A S
smfconst.b φ B
smfconst.f F = x A B
Assertion smfconst φ F SMblFn S

Proof

Step Hyp Ref Expression
1 smfconst.x x φ
2 smfconst.s φ S SAlg
3 smfconst.a φ A S
4 smfconst.b φ B
5 smfconst.f F = x A B
6 nfmpt1 _ x x A B
7 5 6 nfcxfr _ x F
8 nfv a φ
9 4 adantr φ x A B
10 1 9 5 fmptdf φ F : A
11 nfv x a
12 1 11 nfan x φ a
13 nfv x B < a
14 12 13 nfan x φ a B < a
15 4 ad2antrr φ a B < a B
16 simpr φ a B < a B < a
17 14 15 5 16 pimconstlt1 φ a B < a x A | F x < a = A
18 eqidd φ a B < a A = A
19 sseqin2 A S S A = A
20 3 19 sylib φ S A = A
21 20 eqcomd φ A = S A
22 21 ad2antrr φ a B < a A = S A
23 17 18 22 3eqtrd φ a B < a x A | F x < a = S A
24 2 ad2antrr φ a B < a S SAlg
25 2 uniexd φ S V
26 25 3 ssexd φ A V
27 26 ad2antrr φ a B < a A V
28 24 salunid φ a B < a S S
29 eqid S A = S A
30 24 27 28 29 elrestd φ a B < a S A S 𝑡 A
31 23 30 eqeltrd φ a B < a x A | F x < a S 𝑡 A
32 nfv x ¬ B < a
33 12 32 nfan x φ a ¬ B < a
34 4 ad2antrr φ a ¬ B < a B
35 rexr a a *
36 35 ad2antlr φ a ¬ B < a a *
37 simpr φ a ¬ B < a ¬ B < a
38 simplr φ a ¬ B < a a
39 38 34 lenltd φ a ¬ B < a a B ¬ B < a
40 37 39 mpbird φ a ¬ B < a a B
41 33 34 5 36 40 pimconstlt0 φ a ¬ B < a x A | F x < a =
42 eqid S 𝑡 A = S 𝑡 A
43 2 26 42 subsalsal φ S 𝑡 A SAlg
44 43 0sald φ S 𝑡 A
45 44 ad2antrr φ a ¬ B < a S 𝑡 A
46 41 45 eqeltrd φ a ¬ B < a x A | F x < a S 𝑡 A
47 31 46 pm2.61dan φ a x A | F x < a S 𝑡 A
48 7 8 2 3 10 47 issmfdf φ F SMblFn S