Step |
Hyp |
Ref |
Expression |
1 |
|
smfconst.x |
|- F/ x ph |
2 |
|
smfconst.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfconst.a |
|- ( ph -> A C_ U. S ) |
4 |
|
smfconst.b |
|- ( ph -> B e. RR ) |
5 |
|
smfconst.f |
|- F = ( x e. A |-> B ) |
6 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
7 |
5 6
|
nfcxfr |
|- F/_ x F |
8 |
|
nfv |
|- F/ a ph |
9 |
4
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
10 |
1 9 5
|
fmptdf |
|- ( ph -> F : A --> RR ) |
11 |
|
nfv |
|- F/ x a e. RR |
12 |
1 11
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
13 |
|
nfv |
|- F/ x B < a |
14 |
12 13
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ B < a ) |
15 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> B e. RR ) |
16 |
|
simpr |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> B < a ) |
17 |
14 15 5 16
|
pimconstlt1 |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> { x e. A | ( F ` x ) < a } = A ) |
18 |
|
eqidd |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> A = A ) |
19 |
|
sseqin2 |
|- ( A C_ U. S <-> ( U. S i^i A ) = A ) |
20 |
3 19
|
sylib |
|- ( ph -> ( U. S i^i A ) = A ) |
21 |
20
|
eqcomd |
|- ( ph -> A = ( U. S i^i A ) ) |
22 |
21
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> A = ( U. S i^i A ) ) |
23 |
17 18 22
|
3eqtrd |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> { x e. A | ( F ` x ) < a } = ( U. S i^i A ) ) |
24 |
2
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> S e. SAlg ) |
25 |
2
|
uniexd |
|- ( ph -> U. S e. _V ) |
26 |
25 3
|
ssexd |
|- ( ph -> A e. _V ) |
27 |
26
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> A e. _V ) |
28 |
24
|
salunid |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> U. S e. S ) |
29 |
|
eqid |
|- ( U. S i^i A ) = ( U. S i^i A ) |
30 |
24 27 28 29
|
elrestd |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> ( U. S i^i A ) e. ( S |`t A ) ) |
31 |
23 30
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ B < a ) -> { x e. A | ( F ` x ) < a } e. ( S |`t A ) ) |
32 |
|
nfv |
|- F/ x -. B < a |
33 |
12 32
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ -. B < a ) |
34 |
4
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> B e. RR ) |
35 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
36 |
35
|
ad2antlr |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> a e. RR* ) |
37 |
|
simpr |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> -. B < a ) |
38 |
|
simplr |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> a e. RR ) |
39 |
38 34
|
lenltd |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> ( a <_ B <-> -. B < a ) ) |
40 |
37 39
|
mpbird |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> a <_ B ) |
41 |
33 34 5 36 40
|
pimconstlt0 |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> { x e. A | ( F ` x ) < a } = (/) ) |
42 |
|
eqid |
|- ( S |`t A ) = ( S |`t A ) |
43 |
2 26 42
|
subsalsal |
|- ( ph -> ( S |`t A ) e. SAlg ) |
44 |
43
|
0sald |
|- ( ph -> (/) e. ( S |`t A ) ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> (/) e. ( S |`t A ) ) |
46 |
41 45
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ -. B < a ) -> { x e. A | ( F ` x ) < a } e. ( S |`t A ) ) |
47 |
31 46
|
pm2.61dan |
|- ( ( ph /\ a e. RR ) -> { x e. A | ( F ` x ) < a } e. ( S |`t A ) ) |
48 |
7 8 2 3 10 47
|
issmfdf |
|- ( ph -> F e. ( SMblFn ` S ) ) |